

MetaModelAgent – Metamodeling © 2023 Adocus AB page 1 of 77

1

1

MetaModelAgent
for IBM Rational® Software Architect Designer and RealTime Edition,

HCL RealTime Software Tooling and Eclipse Papyrus

Metamodeling
UML-profile for Metamodels

to be used in MetaModelAgent
Version 4.6.1

AO-MMA-022 • 2023-09-15

© 2023 Adocus AB

This document and its contents are protected by copyright

and must not be copied or distributed, wholly or partially

without prior authorization from Adocus

MetaModelAgent – Metamodeling © 2023 Adocus AB page 2 of 77

2

2

Contents

1 Introduction 5

1.1 Reading Instruction 5

1.2 References 6

1.3 Terminology 7

1.4 What’s New 8

1.5 Contact 9

2 Create a new metamodel 10

2.1 Using RSAD/RSARTE or HCL RTist 10

2.2 Using Eclipse Papyrus 11

2.3 Populate the Metamodel 12

2.4 Validate and Test the Metamodel 12

3 Introduction to the UML-profile 13

3.1 Position in the OMG Model Hierarchy 13

3.2 The Scope of this Profile 13

3.3 Summary of the Metamodel Notation 14

4 Defining Model Items 17

4.1 Item Types 17

5 Defining Property Constraints 18

5.1 Property Values 18

5.2 Stereotypes Property Values 19

5.3 Property Types 19

5.4 Key Properties 20

5.5 Severity of a Constraint 20

5.6 Alternative Property Values 21

5.7 Elements as Property Values 23

5.8 User-Defined Properties 23

5.9 Optional Property Values 24

5.10 Multi-Valued User-Defined Properties 24

5.11 Reference to a Context Item Property Value 25

5.12 Default property values 25

6 Reuse between Metaclasses 26

6.1 Metaclass Inheritance 26

6.2 Generic metaclasses 26

7 Defining Model Structure Constraints 27

7.1 Cardinality Constraints 27

7.2 Avoiding Ambiguous Structure Constraints 28

7.3 And, Or, Xor and Not in Structure Constraints 28

7.4 Enforced nested elements 30

7.5 Explicit parent references 30

7.6 Nested models using separate metamodels 31

MetaModelAgent – Metamodeling © 2023 Adocus AB page 3 of 77

3

3

7.7 Unconstrained Model Structure 31

7.8 Suppressing Item Creation 31

7.9 Suppressing Change 32

8 Defining Relationships 33

8.1 Relationship Source 33

8.2 Relationship Target 33

8.3 Associations 33

8.4 References to External Elements 35

9 Defining Activity Nodes 36

9.1 Actions, Pins, Control Nodes, Object Nodes 36

10 Defining Connectors 37

10.1 Transitions & Guards 37

10.2 Object and Control Flows 38

10.3 Messages 38

10.4 More about Connector Constraints 39

11 Defining Custom Diagrams 40

11.1 Custom diagrams in Papyrus extensions 40

12 Defining Diagram Content 40

12.1 Classifier Diagrams and Object Diagrams 40

12.2 Other Diagrams 41

13 Combined Property Constraints 42

13.1 Restrictions on using Interfaces 42

14 Constraint Constraints 43

14.1 Defining Constraint Constraints 43

15 UML Real-Time Modeling Support 44

15.1 Protocols 44

15.2 Call Events 44

15.3 Capsules 45

16 Organizing Metamodels 46

16.1 Metaclass packages 46

16.2 Import between Metamodels 46

16.3 Extend and Adjust an Existing Metamodel 46

16.4 Documenting a Metamodel 49

16.5 Using a Metamodel 50

17 Validating a metamodel 52

17.1 Built-in model validation (RSAD/RSARTE and HCL RTist) 52

17.2 Using the meta-metamodel 52

17.3 Using the Metamodel validation 52

17.4 Using a test model 53

17.5 Reviewing the metamodel 53

18 Deploying a Metamodel 54

MetaModelAgent – Metamodeling © 2023 Adocus AB page 4 of 77

4

4

18.1 As a workspace model 54

18.2 In a plugin 54

19 Models included in MetaModelAgent 56

19.1 MetaModelAgent Profile 56

19.2 Meta-Metamodel 56

19.3 General UML Guidelines Metamodel 56

19.4 General UML-RT Guidelines Metamodel 56

19.5 Metamodel Template 56

Appendix A Stereotypes 57

Class stereotypes representing UML elements 57

Class stereotypes representing Diagrams 58

Other Class Stereotypes 58

Attribute Stereotypes 58

Aggregation Stereotypes 58

Generalization Stereotypes 59

Container Stereotypes 59

Appendix B Meta Class Attributes 60

Attributes representing standard UML element properties 60

Special attributes 65

Papyrus-specific attributes 66

Appendix C Meta Class Operations 67

Appendix D Regular Expressions 68

Appendix E Pre-defined Keyword 70

Appendix F Known Limitations 71

UML Element types not supported 71

UML Elements without an own Metaclass Stereotype 71

Other Limitations 72

Exceptions from the UML2.x metamodel 72

Appendix G The Metamodel Template 73

Appendix H Example of a Metamodel 74

Appendix I Migrating Instructions 75

From version 4.2.0 to version 4.2.1 75

From version 4.2.1 to version 4.2.2 75

From version 4.2.2 to version 4.5.2 75

From version 4.5.2 to version 4.5.3 75

Appendix J Experimental features 76

DSML Semantics API 76

Definition of optional stereotypes 76

Exclusion of Property Definitions 77

MetaModelAgent – Metamodeling © 2023 Adocus AB page 5 of 77

5

5

1 Introduction

This manual defines a UML-profile for metamodels expressing UML-based domain-
specific model languages (DSMLs) to be used in MetaModelAgent.

MetaModelAgent is a modeling tool extension which based on these kinds of metamodels
brings domain-specific modeling and model analysis capabilities to the host tool.

MetaModelAgent are available for the following host tools: IBM Rational Software
Architect family (RSAD and RSARTE), HCL RealTime Software Tooling (RTist) and
open-source Eclipse Papyrus.

For information on how to use MetaModelAgent for domain-specific modeling, please
refer to the MetaModelAgent Modeling User Manual.

1.1 Reading Instruction

The readers of this manual are primary those persons involved in designing a UML-based
domain-specific modeling language to be used in MetaModelAgent.

Good knowledge in UML is required to understand this manual.

Chapter 2: Create a new metamodel, describes how to create a new metamodel using
your modeling tool.

Chapter 3: Introduction to the UML-profile, describes how this UML-profile is constructed,
what it can express and how it fits in to a model hierarchy.

Chapter 4: Defining Model Items, describes how model items (elements, diagrams, and
relations) should be specified in a metamodel.

Chapter 5: Defining Property Constraints, describes how constraints on item properties
should be specified in a metamodel.

Chapter 6: Reuse between metaclasses, describes how inheritance can be used within a
metamodel.

Chapter 7: Defining Model Structure Constraints, describes how a model structure built
up of elements and diagrams should be represented in a metamodel.

Chapter 8: Defining Relationships, describes how relations between elements should be
represented in a metamodel.

Chapter 9: Exemptions from UML2, a summary of those parts of UML2 that is
represented differently in the metamodel notation.

Chapter 10: Defining Connectors, describes how connectors such as transitions, object
flows, control flows, and messages should be represented in a metamodel.

Chapter 11: Defining Custom Diagrams, describes how custom diagrams in Papyrus can
be represented in a metamodel.

Chapter 12: Defining Diagram Content, describes how diagram content should be
expressed in a metamodel.

Chapter 13: Combined Property Constraints, describes how to express composite
property constraints that makes it easy for the end user.

Chapter 14: Constraint Constraints, describes how to explicitly express Constraint
constraints.

Chapter 15: Real-Time modeling support, describes how real-time specific concepts in
Rational Software Architect Real-Time Edition should be expressed in a metamodel.

MetaModelAgent – Metamodeling © 2023 Adocus AB page 6 of 77

6

6

Chapter 16: Organizing metamodels, describes how metamodels can be divided and
structured into packages, and extended in other metamodels. This chapter also
introduces how to document a metamodel.

Chapter 17: Validating a metamodel describes several complementary techniques for
validating the correctness of a metamodel.

Chapter 18: Deploying a metamodel describes how to create a new metamodel based in
the provided template and how to populate, test and deploy the metamodel to the users.

Chapter 19: Models included in MetaModelAgent, describes the models, metamodels,
templates and profiles that are included in the MetaModelAgent product package.

Appendix A: Stereotypes, a reference list of all stereotypes defined in this profile.

Appendix B: Meta class attributes, reference lists of all valid attributes representing UML
element properties and other MetaModelAgent-specific element properties.

Appendix C: Meta class operations, reference list of all valid operations in a metamodel
which are used for controlling MetaModelAgent behavior.

Appendix D: Regular expressions, a summary of the regular expression language that
can be used to express property constraints.

Appendix E: Pre-defined Keywords, a list of pre-defined keywords in the metamodel
notation.

Appendix F: Known Limitations, a summary of known limitations in the current version of
the metamodel notation and a list of exceptions from the UML 2.x specification.

Appendix G: The Metamodel template, a diagram of the metamodel template that is
included in MetaModelAgent.

Appendix H: Example of a Metamodel, a complete example of a metamodel for use-case
modeling.

Appendix I: Migrating Instructions contains guidance on how to migrate a metamodel
from an earlier version.

Appendix J: Experimental features contains a set of new features which are
experimental. That means that they can be changed or removed at any time.

1.2 References

[1] Eclipse UML2 documentation
(www.eclipse.org/uml2)

[2] IBM Rational Software Architect
(www-03.ibm.com/software/products/en/rational-software-architect-family)

[3] Papyrus Modeling Environment
(www.eclipse.org/papyrus)

[4] MetaModelAgent
(www.metamodelagent.com)

http://www.eclipse.org/uml2
www-03.ibm.com/software/products/en/rational-software-architect-family
www.eclipse.org/papyrus
http://www.metamodelagent.com/

MetaModelAgent – Metamodeling © 2023 Adocus AB page 7 of 77

7

7

1.3 Terminology

The following terms are commonly used in this manual.

Term Explanation

DSML Domain-specific modeling language. Modeling language that is tailored for a
specific business domain.

Item An item is the generic term for all kinds of elements, relations, and diagrams.

Item type The term item type is used to denote the UML type of a specific item.
Examples of Item types are: Class, Activity and Dependency.

Property A property is a characteristic thing on an item. A property is often adding
semantics to the item. Examples of properties are: Name, Visibility and
Abstract.

Model A model is a complete description of a system from a specific view on a
constant level of abstraction.

UML-profile

A UML-profile is a well-defined extension of UML within a specific modeling
domain, where the built-in extension mechanisms are used.

A UML profile normally contains stereotype definitions, property definitions
and constraints. A UML-profile must provide unambiguous semantics for all
included definitions.

Metamodel A metamodel defines a DSML in terms of metaclasses and their
relationships for a specific kind of models. A model is an instance of its
metamodel.

Metaclass A metaclass is a class in a metamodel that defines the rules for valid items in
a model, by defining the constraints that must hold for the items.

Each item within a model is an instance of a metaclass in a metamodel.

Metaclass
attribute

A metaclass attribute is an attribute on a metaclass.

A metaclass attribute defines the constraints of a property´s value for items
that are instances of the metaclass. Metaclass attributes can specify
constraints on both standard UML-properties and user-defined properties
defined on stereotypes in a UML-profile.

Property
Definition

Same as Metaclass attribute

Metaclass
operation

A metaclass operation is an operation on a metaclass.

A metaclass operation represents some behavior or characteristic
constraints for items that are instances of the metaclass.

MetaModelAgent – Metamodeling © 2023 Adocus AB page 8 of 77

8

8

1.4 What’s New

From v4.3.0 to v4.3.1

• Support for definition of nested models using separate metamodels, see chapter
7.6.

• Support for stylesheet property definitions in Papyrus, see Appendix B.

From v4.3.1 to v4.4.0

• No changes in the metamodel notation.

• An Extension point added for registering the mapping from UML elements to a
user-defined metamodel. Dependency relationship will then not be needed
between a user model and the registered metamodel, see chapter 18.

From v4.4.0 to v4.4.1

• The extension point for registering the mapping from UML elements to a user-
defined metamodel, introduced in v4.4.0, has been improved to also support
metamodels stored in the workspace, see chapter 18.

v4.4.1 to v4.5.0

• Metamodel templates based on built in General UML Guidelines and General
UML-RT guidelines (available in RSA RTE and HCL RTist only) are available
when creating a new model. See chapter 2.1 and 2.2.

• Support for enforced nested elements. See chapter 7.4.

• Support for metaclass attributes representing redefined properties.
See Appendix B.

• Simplified entering of explanation of valid property values. See chapter 16.4.

• Redesigned metaclass attribute appendix in this manual. See Appendix B.

v4.5.0 to v4.5.1

• Stylesheet property available for models in Papyrus. See Appendix B.

v4.5.1 to v4.5.2

• No changes in the metamodel notation.

v4.5.2 to v4.6.0

• Papyrus only: Support for the MetaModelAgent architecture context used by
metamodels have been removed. Metamodels should now be based on the UML
architecture context, as any other ordinary metamodel, see chapter 2.2 and
Appendix I.

• The following experimental features have been added (see Appendix J for
details):

o DSML Semantics API,

o Definition of optional stereotypes

o Exclusion of Property Definition, see Appendix J.

MetaModelAgent – Metamodeling © 2023 Adocus AB page 9 of 77

9

9

v4.6.0 to v4.6.1

• Support for overriding alphabetic sort order of metaclass package in UI and
published guidelines. See chapter 16.1.

• Support for additional sections for a metamodel and metaclass packages in web
published guidelines. See chapter 16.1.

• Support for additional properties for Information Flows. See Appendix B.

• Support for method property on Behavioral Features. See Appendix B.

• Experimental feature: Stereotypes representing enumeration literals. Contact
Adocus for information.

1.5 Contact

Please contact Adocus (support@adocus.com) if more information, education, or support
around this metamodeling profile is needed, or if there are any detected defects or ideas
of improvement.

Please visit Adocus web site www.adocus.com for information about new releases.

Please visit MetaModelAgent web site www.metamodelagent.com for more detailed
information about MetaModelAgent.

mailto:support@adocus.com
http://www.adocus.com/
http://www.metamodelagent.com/

MetaModelAgent – Metamodeling © 2023 Adocus AB page 10 of 77

10

10

2 Create a new metamodel

2.1 Using RSAD/RSARTE or HCL RTist

MetaModelAgent provides pre-filled metamodel templates that can be used to create a
metamodel for your own DSML. Follow these steps:

1. Select File→New→Model from the main menu to open the New Model Wizard.

2. Select to create a model from a Standard Template and press Next.

3. Select the category MetaModelAgent and select one of the available templates.
The templates available are described below.

4. Fill in an appropriate name and select a destination for your new metamodel.

5. Press Finish and your new metamodel will be created based on the template.

The new metamodel will make use of the MetaModelAgent profile which provides all the
necessary stereotypes.

Metamodel templates

The following metamodel templates are available:

Metamodel Template Description

Minimal Meta Model
Template

A minimal metamodel with only the mandatory metaclasses that
must exist in a metamodel. Use this template if you would like to
define your own UML-based DSML from start.

UML Meta Model
Template

A complete metamodel which cover all concepts in UML
supported by MMA. Use this metamodel if you want to use most
of UML but make some minor reductions, adjustments and/or
extensions for your own DSML.

This template is the same model as the built-in General UML
Modeling Guidelines which can be used for UML models out-of-
the-box.

MetaModelAgent – Metamodeling © 2023 Adocus AB page 11 of 77

11

11

UML-RT Meta Model
Template

A complete metamodel which cover all concepts in UML-RT
supported by MMA. Use this metamodel if you are using RSARTE
or HCL RTist and want to use most of UML-RT but make some
minor reductions, adjustments and/or extensions for your own
DSML.

This template is the same model as the built-in General UML-RT
Modeling Guidelines which can be used for UML-RT models out-
of-the-box.

2.2 Using Eclipse Papyrus

MetaModelAgent provides pre-filled metamodel templates that can be used to create a
metamodel for your own DSML. Follow these steps:

1. Select File→New→Papyrus Model from the main menu to open the New Papyrus
Model Wizard.

2. Select Software Engineering as architectural context and press Next.
IMPORTANT: In previous versions of MetaModelAgent there was a Metamodel
architecture context which should be used. This architecture is now deprecated,
see Appendix I Migrating Instructions.

3. Select the parent folder and set the file name of the new metamodel and press
Next.

4. Set the root model element name for the Metamodel.

MetaModelAgent – Metamodeling © 2023 Adocus AB page 12 of 77

12

12

5. Select a metamodel template to use from the dropdown list of available templates.
Read more about the available metamodel templates below.

6. Press Finish to add a new blank metamodel or select the pre-filled template from
the drop-down list and press Finish to add a new pre-filled metamodel. You may
be prompted for a profile migration after pressing Finish.

The new metamodel will make use of the MetaModelAgent profile which provides all the
necessary stereotypes.

Metamodel templates

The following metamodel templates are available:

Metamodel Template Description

Minimal metamodel
template

A minimal metamodel with only the mandatory metaclasses that
must exist in a metamodel. Use this template if you would like to
define your own UML-based DSML from start.

Built-in metamodel for
standard UML

A complete metamodel which cover all concepts in UML
supported by MMA. Use this metamodel if you want to use most
of UML but make some minor reductions, adjustments and/or
extensions for your own DSML.

This template is the same model as the built-in General UML
Modeling Guidelines which can be used for UML models out-of-
the-box.

2.3 Populate the Metamodel

You are now ready to populate your metamodel, so it represents your DSML. Use this
manual as a guide on how to develop the metamodel.

• Create metaclasses for all kind of UML items that should be valid in your
metamodel. Select readable names of the metaclasses to reflect the concept that
they represent in your domain.

• Create metaclass attributes for all significant properties for each kind of item.

• If your metamodel is large, organize your metamodel in metaclass packages, and
maybe separate it into several linked metamodels.

• Document all metaclasses and metaclass attributes so that the user understands
what they represent and how they should be used.

2.4 Validate and Test the Metamodel

There are several complementary techniques for validating and testing a metamodel
before deploying it to the users. Chapter 17 describes in detail the different techniques
that can be used.

MetaModelAgent – Metamodeling © 2023 Adocus AB page 13 of 77

13

13

3 Introduction to the UML-profile

3.1 Position in the OMG Model Hierarchy

The table below shows the levels of models defined in the OMG model hierarchy.

The UML-profile defined in this manual state the design of metamodels on level M2. The
UML-profile itself can therefore be defined by a meta-metamodel on level M3. The meta-
metamodel is delivered as part of the MetaModelAgent tool.

Level Content Explanation Typical items

M3 Meta-metamodel A metamodel defining how metamodels
on level M2 should be designed.

Metaclasses

M2 Metamodel A metamodel defining how models on
level M1 should be designed.

Metaclasses

M1 Model A model defining executable model
instances on level M0.

Classes
Use Cases

M0 Instantiation of
a model

An executing instance of a model on
level M1.

Objects

3.2 The Scope of this Profile

This UML-profile defines a simple-to-use metamodel notation, optimized to express UML-
based domain-specific modeling languages for Eclipse UML2-models. For details about
Eclipse UML2, see ref. [1].

The profile can be used to express UML-based domain-specific languages including the
following kind of constructions:

• All kind of model elements, except a few kinds of elements within activities,
interactions, and state machines.

• All kind of diagrams.

• All kind of relations between all kinds of supported elements.

• Constraints on all built-in properties for all supported elements, relations, and
diagrams.

• Constraints on all user-defined properties defined by profile stereotypes.

• Constraints on the model structure including elements, relations, and diagrams.

• Constraints on diagram contents for all diagrams.

• All kind of modeling constraints can be expressed as mandatory rules as well as
recommendations and information issues.

The UML-profile also contains mechanisms for organizing and reusing metamodels.

MetaModelAgent – Metamodeling © 2023 Adocus AB page 14 of 77

14

14

3.3 Summary of the Metamodel Notation

A metamodel is expressed by using classes, attributes, operations, interfaces, relations,
and enumerations. A metamodel can therefore be visualized in one or several class-
diagram.

The diagram below shows a subset of a realistic metamodel specifying a subset of UML
and some minor extensions for use-case modeling.

Example 1: A subset of a metamodel specifying a DSML for use-case models.

Classes in a metamodel, also called metaclasses, are used to specify item definitions. An
item definition defines a specific kind of items which are valid in the kind of models the
metamodel defines.

• The stereotype of a metaclass indicates the UML base type of the items. The
name of a metaclass should give a hint of what the items represent.

• An attribute of a metaclass defines a significant property for the items and often
also constraints on that property. The stereotype of an attribute indicates the
severity of the constraint.

• An operation of a metaclass is used to express specific characteristic of the
items.

• Composite aggregations represent constraints on the model structure.

• Shared aggregations represent constraints on diagram contents.

• Plain associations (not included in the diagram above) represent constraints on
relationships suppliers.

• Generalization relationships are used to inherit and make refinements between
metaclasses.

MetaModelAgent – Metamodeling © 2023 Adocus AB page 15 of 77

15

15

• Enumerations (not included in the diagram above) are used to express lists of
valid property values.

• Usage relationships (not included in the diagram above) may optionally be used
to express that a metaclass is referring an enumeration or another metaclass.

• Interfaces (not included in the diagram above) are used to express concepts that
are realized by two or several private (invisible) metaclasses.

• Realization relationships (not included in the diagram above) are used to express
that a metaclass realizes an interface.

• Constraints (not included in the diagram above) are used to express exclusive-or
constraints between aggregated metaclasses, or advanced constraints on
diagram content.

The left part of the metamodel example above should be interpreted in the following way:

• A Use-Case Model is a model. A Use-Case Model should have some name and
is recommended to have some documentation. A Use-Case Model should
contain one or several Actor Packages.

• An Actor Package is a package that must have the stereotype «actorPackage»
from a “UCM profile”. An Actor Package should have some name and is
recommended to have documentation. An Actor Package should contain one or
several Actors and may optionally contain an Actor Diagram.

• An Actor is a UML-actor which can be either a Human Actor or an External
System depending on the keyword. The common things about all actors are that
they should have some name and are recommended to have documentation. The
abstract property is also significant, but it can have any value.

• Finally, an Actor Diagram is a use-case diagram which must have the name
“Overview”.

The complete notation of metamodels is described in detail with several examples in the
following chapters of this manual.

The metamodel General UML Modeling Guidelines that are included in the
MetaModelAgent package contains a complete metamodel of the part of UML that this
notation support. This metamodel can be used to understand how to build our own
metamodels.

MetaModelAgent – Metamodeling © 2023 Adocus AB page 16 of 77

16

16

Example 2: A use-case model that follows the metamodel example.

MetaModelAgent – Metamodeling © 2023 Adocus AB page 17 of 77

17

17

4 Defining Model Items

Classes representing metaclasses are used to define the kind of items (elements,
diagrams and relationships) that can exist in a model.

One metaclass should exist for each unique kind of item that should be valid in a model.
A metaclass defines which item type that is expected and property constraints on that
item type.

An item in a model is an instance of its metaclass and should fulfill all its constraints for
the model to be regarded as correct.

Tip: name the metaclasses so that it indicates the concept represented by the metaclass.
The name should be unique within the metamodel.

4.1 Item Types

The stereotype of a metaclass defines the kind of UML item represented by the
metaclass.

There is one unique stereotype for each type of item in UML. Examples of stereotypes
representing items are «package», «class», «useCase», «dependency» and
«classDiagram».

Example 3: The metaclass ControlClass represents a class in a model.

See Appendix A for a complete list of stereotypes representing items.

MetaModelAgent – Metamodeling © 2023 Adocus AB page 18 of 77

18

18

5 Defining Property Constraints

An attribute of a metaclass is used to express a constraint on a significant property for the
kind of items that the metaclass represents. There are pre-defined attribute names for all
kind of properties for all kinds of items. Examples of attributes are: name, stereotypes,
keywords, visibility and documentation.

See Appendix B for a complete list of predefined attribute names.

Only those properties for which there are an attribute in the metaclass, are regarded as
significant. A lack of a valid attribute indicates an insignificant property.

Example 4: The metaclass ControlClass represents a kind of class that has
three significant properties.

Each type of item supports its own subset of properties. Only those attributes that
represents supported properties for the item kind should be expressed in the metaclass.

For detailed information of valid properties for each specific item kind, see ref. [1].

The order of the attributes within the metaclass has no significance.

5.1 Property Values

The default value of a metaclass attribute is used to express constraints on the values
that the corresponding property must hold.

The default value can be one of the following:

• A regular expression that the property value must fulfill, for example: UC.{3}:.*.

• A constant string representing a fix property value, for example: ‘1..*’. Constant
strings should be surrounded with single quote characters. If constant values do
not contain any characters representing regular expression semantics, the
surrounding single quote characters may be omitted.

• A keyword beginning with @, indicating a special kind of constraint. For example,
@SOME indicates that the property value should not be left empty.

• References to other property values. See chapter 5.11.

The possibility to use regular expression makes it possible to define complex property
value constraints. See Appendix D for more information on how to define regular
expressions.

The following keywords can be used as pre-defined constraints on a property value:

Keyword Semantics for the item property

@SOME The property value must not be empty.

@NONE The property value must be empty.

@ANY The property can have any value.

MetaModelAgent – Metamodeling © 2023 Adocus AB page 19 of 77

19

19

5.2 Stereotypes Property Values

A value of the stereotype property should be given in the following format:
<Profile name>::<Stereotype name>, where the profile name must be the name of an
applicable profile for the model.

The stereotypes property and the keywords property also allow multiple values. That can
be expressed by a comma separated list of values as the default value of the metaclass
attribute.

Example 5: The stereotype Control from the RUPAnalysis profile and the
stereotype Utility from the Standard profile must be set for classes
that should be regarded to be control classes.

The icon to be presented in MMA menus, wizards and views is taken from the first
stereotype in the list. If there is no icon defined for the first stereotype in the list, the
standard icon for the UML-element is used.

The list of stereotypes can have the keyword @ANY as the last value. @ANY means that
any additional stereotypes besides the explicit specified ones are allowed.

Important: Stereotypes from the built-in standard profile should be named with an initial
upper-case letter, even if they seem to have an initial lower-case letter in the profile. E.g.
the attribute name Standard::Subystem should be used to refer to the subsystem
stereotype in the Standard profile.

5.3 Property Types

All metaclass attributes should set the type property. The valid values of the Type
property are:

• String from the built-in library of primitive types.

• Boolean from the built-in library of primitive types for metaclass attributes
representing properties with boolean values.

• Enumerations defined in the metamodel, which contains literals for the property
values. See chapter 5.6 for more information on how and when to use
enumerations as the type of a property.

• Meta classes defined in the metamodel, which instances must match the value of
the corresponding property. See chapter 5.7 for more information on how and
when to use metaclasses as the type of a property.

MetaModelAgent – Metamodeling © 2023 Adocus AB page 20 of 77

20

20

Example 6: The metaclass Control Class represents a type of class with a
non-empty name, the stereotype «Control» from the RUPAnalysis
profile, non-abstract and with an optional documentation.

5.4 Key Properties

The metaclass attributes are used to express constraints on item properties. If there are
several metaclasses in the metamodel defining variants of the same item type, there is a
need to decide which metaclass to use for validation.

The stereotype «key» is used for those metaclass attributes which constraints must hold
for an item to be regarded as an instance of the metaclass.

A metaclass can have several «key» attributes. If any of them is not fulfilled by an item,
that item is not regarded to be an instance of the metaclass.

Example 7: The metaclass Control Class represents classes that must have
the stereotype «Control».

The metamodel is as ambiguous if there is more than one metaclass, despite the
existence of «key» attributes, which are matched by a single item.

5.5 Severity of a Constraint

There is often a need of specifying mandatory rules as well as more liberated
recommendations and perhaps even information issues. It is for example normal to
regard the existence of documentation in a model as recommendations.

This profile supports three different severity levels on a metaclass attribute. Stereotypes
are used to indicate the severity:

«rule» Represents a mandatory rule which results in an error if not fulfilled.

«rec» Represents a recommendation which results in a warning if not fulfilled.

«info» Represents an information issue which results in an information-reminder if
not fulfilled.

MetaModelAgent – Metamodeling © 2023 Adocus AB page 21 of 77

21

21

Example 8: The metaclass Control Class represents a class construction,
where:
- the prerequisite is that the stereotype is «Control»
- the name must exist
- there is a recommendation that the class must not be abstract
- documentation may exist or not.

All metaclass attributes must have the stereotype set to either «key», «rule», «rec» or
«info».

5.6 Alternative Property Values

There is often a need to define several alternative valid values for a property. This can be
achieved by defining one separate metaclass for each alternative value, where only the
default values for the specific metaclass attribute will vary. However, this is a bit clumsy
and may end up in a large set of similar metaclasses.

A better solution provided is to define an enumeration that specifies a set of alternative
values. Each enumeration literal represents an alternative value.

The type property of the metaclass attribute is then set to the enumeration. The same
enumeration can be reused to define valid sets of property values for different kind of
properties.

The keyword @EMPTY can be used as a literal in the enumeration to denote an empty
string as a valid property value.

Example 9: A declaration of an enumeration class that defines four alternative
values, where one of the values is the empty string.

Example 10: The stereotypes declaration makes use of the enumeration. Items
are regarded as instance of this metaclass if they have one of the
stereotype values from the enumeration or no stereotype at all.

MetaModelAgent – Metamodeling © 2023 Adocus AB page 22 of 77

22

22

Ordering the literals

For each literal, the value property could be set to indicate the presentation order of the
literals in MetaModelAgent. If no literal values are specified, alphabetic order applies. The
first presented literal will become the default value when using the Add Wizard.

Use of external literals

If you want to manage the alternative property values without having to update the
metamodel, you can let one or several literals refer to an external text file that contains a
plain list of alternative property values. This is particularly useful if the values often
change.

This is done by adding an enumeration literal where the name of the literal is a file
reference using one of the following two notations:

 @file:<absolute file path> Refers to a file in the local file
system or in a shared location.

 @platform:/<plugin-id>/<relative file path
within the plugin>

Refers to a file in a deployed
plugin.

 @platform:/resource/<project
name>/<relative file path within the project>

Refers to a file in the current
workspace.

The referenced files should be plain text files with one valid property value on each line.
The order of the literals in the MetaModelAgent user interface will be the same as the
order in the file.

You can combine enumeration literals representing property values with literals
representing external files defining additional property values within the same
enumeration.

Predefined keywords

The following keywords can be used as default values to define constraints in
combination with an enumeration as the attribute type:

Keyword Semantics for the item property

@SOME The property should have one of the values listed in the
enumeration.

@OTHER The property should have any value, except the ones listed in the
enumeration.

@ANY The property can have any value, independent of the ones listed
in the enumeration.

Enumeration Usage

A usage relationship may be drawn from the metaclass to the enumeration to make it
clearer that a metaclass attribute uses an enumeration. This is however optional.

Generalization between enumerations

Generalizations between enumerations can be used to extend an enumeration with more
literals. An enumeration that has a generalization relationship to another enumeration will
inherit the other enumerations public literals.

OBS: this is an extended semantics to UML used by MetaModelAgent. According to the
UML specification, Enumeration Literals are not inheritable.

MetaModelAgent – Metamodeling © 2023 Adocus AB page 23 of 77

23

23

5.7 Elements as Property Values

Some item properties can have an element as the property value, for example the type
property of attributes and the return result property of operations.

To specify that a property should have a particular kind of element as its value: Set the
type of the attribute to a metaclass defining the valid elements.

Example 11: The returnResult declaration specifies that the property value set to
an item that is an instance of the Analysis Class metaclass.

The following keywords can be used as default values to define constraints in
combination with a metaclass as the attribute type:

Keyword Semantics for the item property

@SOME The property value must be an element that is an instance of the
metaclass given as the type of the current metaclass attribute.

@OTHER The property value can be anything, except an element that is an
instance of the metaclass as the type of the current metaclass
attribute.

@ANY The property can have any value, independent on the metaclass
specified as the attribute type.

@INSTANCE If the property definition represents a default value of a UML
Property. The value must be an instance of the UML Property’s
type.

If the property definition represents a slot value, the value must be
an instance of the type of the defining feature of the slot,

The behavior is undefined for all other kind of property definitions

@NONE The property value must be null, e.g., no reference to any
element.

An optional usage relationship may be drawn between the metaclasses to make it clearer
that a metaclass attribute uses another metaclass.

You may also represent these constraints as directed plain associations to the metaclass
representing the valid elements. If so the name of the association end should express the
kind of property. In this case you may omit the severity stereotype for the association end.
If omitted the constraint is regarded to be a rule.

5.8 User-Defined Properties

A UML Profile may contain stereotypes with user–defined properties. Constraints on
those user-defined properties can be defined analogue with constraints on build-in
properties by use of metaclass attributes.

If you, for example, have a profile with the stereotype «subsystem» defined, and within
that stereotype the user-defined property Responsible is defined as an attribute of type

MetaModelAgent – Metamodeling © 2023 Adocus AB page 24 of 77

24

24

String. To constraint this property to not be left empty, you can express the following in a
metaclass:

«rule» subsystem/Responsible :String=@SOME

The name of the metaclass attribute denotes the user defined property, as defined in a
profile stereotype. The name of the metaclass attribute should follow the naming
convention:

 <stereotype or category>/<property name>[.<field name>].

The stereotype must refer to a concrete stereotype, even if the property is defined on an
inherited abstract stereotype. The category can be used instead of the stereotype if the
Category1 property is not empty.

The field name denotes a field if the property is defined by a class in the metamodel. User
defined properties where the type is a two or more level composition are not supported.

If a user-defined property within a profile is using an enumeration for its valid values, an
identical enumeration or subset enumeration has to be defined in the metamodel and
used as the type of the metaclass attribute.

5.9 Optional Property Values

Normally the multiplicity of a property definition should be set to 1, except for multi-valued
property definitions, see below. However, multiplicity 0..1 can be used to express that an
empty value is allowed, beside the valid values defined by the property definition.

This means, for example, that a property definition with default value @SOME and
multiplicity 0..1 is exactly the same as a property definition with default value @ANY and
multiplicity 1, for property definitions with the type set to String or Boolean.

5.10 Multi-Valued User-Defined Properties

If the user-defined property has a multiplicity others than 0..1 or 1..1, it is regarded to be a
multi-valued user-defined property. Multi-valued user-defined properties are specified in
the meta-model as described above with the following additions.

• The multiplicity is used to indicate how many values that are allowed.

• The unique flag indicates if several values are allowed to be identical or not.

• The ordered flag indicates if the order of the values is significant or not.

The metamodel may introduce further limitation to the profile usage by specifying a more
narrow multiplicity than the profile and the unique and ordered flag set even if they are
not set in the profile.

«rule» subsystem/Author :String [1..5]=@SOME

Example 12: The user-defined property “Author” associated with the stereotype
subsystem must have one to five string values that are not empty.

1 Category is a standard property on Stereotypes in RSAD/RSARTE and HCL RTist but not in

Papyrus. By using the General UML Guidelines metamodel in MetaModelAgent when editing

profiles in Papyrus, the Category property will be available in the MMA Property View and Add

Wizard.

MetaModelAgent – Metamodeling © 2023 Adocus AB page 25 of 77

25

25

5.11 Reference to a Context Item Property Value

Sometimes a property value is dependent on the parent items property value, or on
another property value in the same item, therefore the metamodel notation makes it
possible to refer to other property values when defining constraints on a property value.

For example: assume that a package should contain an interface which starts with the
same name as the package. This can be expressed by the following metaclass attribute
definition for the metaclass representing the interface:

«rule» name:String=”{PARENT.name}.*”

This kind of expression can be used to refer to any kind of property on the parent and can
be used to define any kind of property constraint for the child item.

A similar notation can be used to refer to another property value in the same item. For
example: To express that the documentation of a specific item should contain the name
of the item:

«rule» documentation:String=”.*{THIS.name}.*”

5.12 Default property values

It is possible to specify a default value for a property, separate from the property rule. The
property default value is defined in a separate metaclass attribute. The attribute should
have the following syntax:

<property name>_default : <Type> = <default value>

• The name of the attribute should be the name of the property followed by the
postfix “_default”.

• The type of the attribute should be the type of the default value, i.e., String.

• The default value of the attribute should be the default value of the corresponding
property:

• References to property values in the parent´s element properties can be included
in the default value definition. The syntax is the same as for parent references in
property value rules, e.g. {PARENT.name}.

Please note there should be no stereotype applied to a property default value definition
attribute.

Example 13: The rule says that the element must have a name and that the
default name should be Overview.

The standard visibility semantics applies to property default value attributes as well,
public attributes may be inherited by sub metaclasses.

MetaModelAgent – Metamodeling © 2023 Adocus AB page 26 of 77

26

26

6 Reuse between Metaclasses

6.1 Metaclass Inheritance

Generalizations can be used between metaclasses to reuse features (attributes, relations,
and operations) between them.

The semantics of a generalization relationship between two metaclasses are as
expected. If a feature has the visibility property set to public it will be reused if it is set to
private it will not. The protected and package visibility has no significance.

Features in a sub metaclass will override the ones with the same name in the super
metaclass. That makes it possible to change any constraint in a sub metaclass.

A metaclass can be abstract, indicating that there cannot be any instances of it in the
model. An abstract metaclass must be inherited by other concrete metaclasses for which
instances can exist.

Example 14: There are three variants of Analysis Classes, Boundary, Control
and Entity. All three shares the same name, documentation, and
abstract constraints, but differ in stereotypes.

You are not allowed to have ambiguous concrete meta-classes in an inheritance tree,
e.g., many metaclasses that may match the same element. If so, you must add/change
«key»-properties to ensure that there are no ambiguities left.

Multiple inheritances are allowed and may cause the normal sorts of troubles. However,
they may add important semantics to the metamodel and are therefore often necessary.

6.2 Generic metaclasses

The super class of a generalization must have the same stereotype as the sub class, or
to a so called generic metaclass,

A generic metaclass is a metaclass with the stereotype «Item». It represents an arbitrary
item of any type. Generic metaclasses act as super metaclasses in a generalization tree
and must be abstract.

Generic metaclasses provide a powerful notation to express or-constraints between
heterogenic items within the model.

A generic metaclass may have attributes defining property constraints. However, each
potential sub-meta class must define an item type that supports all these attributes;
otherwise, the metamodel is regarded incorrect.

MetaModelAgent – Metamodeling © 2023 Adocus AB page 27 of 77

27

27

7 Defining Model Structure Constraints

The structure in a UML model is defined in a metamodel using composite aggregation
relationships between metaclasses.

Composite aggregation relationships between metaclasses can define the following kind
of constraints on the model structure:

• The existence of elements in packages.

• The existence of other elements or element details in elements.

• The existence of different kind of diagrams in different kind of elements.

• The existence of relations drawn from elements.

Each kind of structural composition is described by a navigable composite aggregate
between the metaclasses representing the participating items.

Example 15: An Actor Package should contain actors.

When specifying model structures, inherited properties and operations of classifiers are
regarded as being owned by the classifier that inherits them. The same does not hold for
any other inheritable feature. Properties and operations are also regarded to be redefined
by properties and operations in a sub-classifier with the same name. The value of the
Redefined element property is not respected.

The severity of the composition can be expressed by using the stereotypes «key»,
«rule», «rec» and «info» on the aggregation. The semantic of the stereotypes is the
same as when defining metaclass attributes representing properties:

«key» Must be fulfilled for an element to match the compositor metaclass, see
chapter 7.4 for details.

«rule» Represents a mandatory rule which results in an error if not fulfilled.

«rec» Represents a recommendation which results in a warning if not fulfilled.

«info» Represents an information issue which results in an information-reminder if
not fulfilled.

If no stereotype is set, the aggregation represents a mandatory structure rule.

A concrete Metaclass with the stereotype «model» or «package» that is not composite
part in any composition aggregation represent a potential root element in a UML-model.

7.1 Cardinality Constraints

The multiplicity property on the aggregated role is used to define a specific number or
range of valid number of sub-items in a model structure.

The multiplicity property defines how many sub-item instances of the metaclass which are
valid in the model structure.

MetaModelAgent – Metamodeling © 2023 Adocus AB page 28 of 77

28

28

Example 16: An actor package should contain at least one actor.

7.2 Avoiding Ambiguous Structure Constraints

A metaclass with aggregations to several other metaclasses can result in a situation
where those aggregated metaclasses are not defining mutual exclusive sub-items. In
other words, more than one metaclass may match the same sub-item.

If this situation occurs, there is a need to express a priority-order between the aggregated
metaclasses. This is done by setting a numeric order number as the name1 of the
composite aggregation relationship.

A low number denotes a high priority. Aggregated metaclasses without any specified
order number will have the lowest priority.

Example 17: An operation should in the first place be regarded as instances of
“Constructor”, if not possible they should be instances of “Normal
Operation”.

7.3 And, Or, Xor and Not in Structure Constraints

The common logical operators AND, OR, XOR and NOT is possible to express when
defining constraints on the model structure. See explanation and examples below. You
may of course also combine those patterns to even more complex structure constraints.

Logical AND

Logical AND is expressed by having an aggregation for each part (operand) of the AND-
expression.

1 Having several associations with the same name in a package may lead to a live validation

warning that you should neglect.

MetaModelAgent – Metamodeling © 2023 Adocus AB page 29 of 77

29

29

Example 18: Logical AND: A parent package should have at least one class
child and at least one component child.

Logical OR

Logical OR is expressed by having one aggregation to an abstract metaclass, which have
specialized sub-classes for each alternative. If the sub metaclasses denote different item
types, the stereotype of the abstract metaclass should be «item».

Example 19: Logical OR: A parent package should have at least one class child
or component child.

Logical XOR (Exclusive-OR)

To express XOR you need to define a constraint with the value set to XOR and connect
this constraint to two or more alternatives.

Example 20: Logical XOR: A parent package should have at least one class
child or at least component child, but both classes and components
are not allowed in the same package.

Logical NOT

Logical NOT is default if a composite aggregation is not drawn. NOT can also be explicitly
expressed by setting the multiplicity to 0 in the aggregation. The latter variant may give
better problem explanations when used in MetaModelAgent.

MetaModelAgent – Metamodeling © 2023 Adocus AB page 30 of 77

30

30

Example 21: Logical NOT: A parent package should neither have class children
nor component children.

7.4 Enforced nested elements

By setting the composition stereotype to «key» you define that the composition must be
fulfilled for the element to match the compositor metaclass. This enforces the element to
have the correct nested elements to be identified itself.

Example 22: A component must have an interface to be able to be identified as
a Subsystem.

This kind of rules should be used sparingly and only when there are no other way to
define the same behavior. Nested elements can be created in a single operation when
using the MMA Add Wizard but not when using the standard UI. Refactoring using MMA
Refactor feature cannot be used as it might requires creation of nested elements which is
not supported.

There are also several limitations in MetaModelAgent’s validation capabilities related to
«key» compositions. There are no support for XOR-compositions and only one level of
«key» compositions are supported.

7.5 Explicit parent references

The parent role in a meta-class composition may be named “parent” and be assigned a
«key» or «rule» significance stereotype. That will explicitly indicate that the parent of the
item represented by the composited metaclass must be an item represented by the
metaclass that holds the composition. This may be useful in cases where there are
different concepts, but with the same characteristics, in different positions in the model
and in the same time references to those concepts that MetaModelAgent could not
resolve correctly otherwise.

MetaModelAgent – Metamodeling © 2023 Adocus AB page 31 of 77

31

31

Example 23: Example of an explicit parent reference, that may have «key»
stereotype (not visible) indicating that a class must have an
instance of the metaclass Parent Package as its owning package
to be regarded being an instance of the metaclass Class Child.

You may observe that as an alternative to name the compositor role as “parent”, you may
use a separate directed plain association, or even an attribute, named “parent” to achieve
the same behavior.

7.6 Nested models using separate metamodels

If a model contains nested models, these nested models can use separate metamodels.

To define the usage of separate metamodels o be used for a metaclass, simply draw a
dependency between the metaclass and the separate metamodel.

7.7 Unconstrained Model Structure

Sometimes there is a need to allow an unconstrained model structure beneath a specific
item. In other words, any kind of sub-items are allowed as part of another item.

This can be useful if one wants to release incomplete metamodels.

In a metamodel, this is achieved by the metaclass operation permitAll(). This operation
denotes the possibility for an item to have arbitrary number of any kind of sub-items.

The operation should be public and should not have any arguments.

7.8 Suppressing Item Creation

It is possible to mark a metaclass so that MetaModelAgent will not be able to create new
instances of it. This may be useful if the guideline designer will force the user to use the
built in add-function in Software Architect and Software Modeler to create the
corresponding item.

To mark a metaclass to not be able to be instantiated, add the operation suppressAdd()
to the metaclass. The effect is that the metaclass will not be available as a selectable
menu item in the MetaModelAgent Add submenu.

If you add some non-empty documentation to the suppressAdd() operation, the
metaclass will be presented as a selectable menu item but selecting the menu item will
bring up a message dialog with the text that has been entered as the documentation. This
makes it possible to customize information to the user that the concept defined by the
metaclass is valid but that instances of it cannot be created by using MetaModelAgent.

You may notice that the suppressAdd() operation will not have any impact on the
validation of models.

MetaModelAgent – Metamodeling © 2023 Adocus AB page 32 of 77

32

32

7.9 Suppressing Change

It is also possible to mark a metaclass so that MetaModelAgent will not consider it as an
alternative in the Change To sub menu and in the automatic change wizard. This may be
useful for elements that are automatically added when adding a certain element.

To mark a metaclass to not be an alternative classification for an element, add the
operation suppressChange() to the metaclass. The effect is that the metaclass will not
be considered as an alternative in the Change To menu and in the automatic change
Wizard.

MetaModelAgent – Metamodeling © 2023 Adocus AB page 33 of 77

33

33

8 Defining Relationships

As already mentioned, metaclasses are also used to define different kind of relations that
can exist between elements in a model.

8.1 Relationship Source

The source of a directed relationship is regarded to be the owner of the relationship.

The metaclass representing a source element should have a two-way navigable
composite aggregate relation to the metaclass representing the directed relationship.

Example 24: An instance of “Design class” can have arbitrary number of
realization relationships to interfaces.

Mandatory rules as well as recommendations can be specified by setting the aggregation
stereotype to either «rule», «rec» or «information». If no stereotype is given, the
aggregation represents a mandatory rule.

Multiplicities should be used to denote the number of relationship instances.

8.2 Relationship Target

A plain navigable association is drawn from the metaclass representing the relationship,
towards a metaclass representing the supplier element to specify valid targets of a
directed relationship. The target role name shall be target.

8.3 Associations

An Association in UML is a kind of element that is referred from two classifiers, through
nested property elements, also known as association ends.

Both metaclasses representing association-ends of the association and metaclasses
representing the association itself are therefore used to specify constraints around the
usage of associations within a model,

A composite aggregated metaclass representing the association end specifies the fact
that an element has an association connected to another element in the metamodel.

The metaclass representing the property element representing the association end
should have the stereotype «associationEnd», or «property» if it may represent an
attribute only.

Severity can be specified by setting the aggregation stereotype to either «rule», «rec» or
«info». If no stereotype is given, the aggregation represents a mandatory rule.

Important metaclass attributes for «associationEnd», or «property» metaclasses are:

• type, referring to the metaclass for the element in the opposite end of the
association.

• association, referring to the metaclass for the association element itself.

MetaModelAgent – Metamodeling © 2023 Adocus AB page 34 of 77

34

34

• navigable, defining if an association end is navigable or not.

• opposite, defining valid association ends in the other end of the association.

Example 25: A use case can have arbitrary number of communication
associations to an actor. An actor must have a communication
association with at least one use case.

Navigability

All associations ends are regarded to be owned by the element at the other end of the
association, even thus the ownership according to UML 2.x specification depends on both
the kind of element and whether the association end is navigable or not. As you see in
the example above the association ends are regarded to be owned by the Use Case and
he Actor respectively, even thus the ends of an association between use cases and
actors always are owned by the association, according to the UML 2.x specification.

To define the navigability, you use the navigable property, as shown above. You may
however notice that if you defined a mandatory association end from an element that is
non-navigable. MetaModelAgent may report a validation error if the model containing the
association is unloaded. The same will happen with navigable association ends between
actors and use cases.

Association end limitations

You may define restrictions on which kind of association ends that may participate in the
same association. This is done by setting the multiplicity property in the un-navigable end
of the association from an association end metaclass to the association metaclass. See
example below.

Opposite association ends

A useful attribute when defining association ends is the opposite attribute. You use
opposite to define rules about the valid association ends in other end of the association.
Be careful when defining opposite rules. If you add the stereotype «key» and let the
default value of the opposite attribute be an association end meta class that also has a
«key» opposite rule to your first metaclass, MetaModelAgent validation will lead to an
infinite loop,

MetaModelAgent – Metamodeling © 2023 Adocus AB page 35 of 77

35

35

Example 26: This is an example that separates the concepts of simple
association from composition, and that guarantees that there must
be exact one association end of type Part Role and one of type
Compositor Role in a composition. Simple associations
however must have exactly two Association Roles.

The example also shows the usage of an opposite rule in the
Compositor Role metaclass to make it unique from the
Association Role metaclass.

8.4 References to External Elements

When specifying constraints on properties with elements as values and relationship
targets, there are often a need to refer to elements that are not part of the same model.
Those elements can be part of some other model but are accessed by the current model.
An example of this is a Collaboration in an analysis model referring to a use case in a
use-case model.

If those elements are defined by metaclasses in the metamodel, they will automatically be
regarded as owned by the model. To avoid this to happen, the metaclasses can be
annotated with the operation external(). The existence of this operation means that the
elements represented by the metaclass can be referred from within the model but cannot
be owned by the model.

Example 27: A design class can realize interfaces defined in some other model.

MetaModelAgent – Metamodeling © 2023 Adocus AB page 36 of 77

36

36

9 Defining Activity Nodes

9.1 Actions, Pins, Control Nodes, Object Nodes

There are a lot of defined variants of these kinds of elements in UML2. The metamodel
notation simplifies that fact by having only one metaclass stereotype for each base
element.

To indicate a specific variant of a base element, you define a metaclass attribute with the
following properties:

• The name should be the name of the base element followed by the word Kind.

• The stereotype should be «key».

• The type should be String or some own-defined enumeration.

• If the type is String, the default value should denote the valid kind of variant. If
the type is an enumeration, the default value may be a valid keyword.

Example 28: A metaclass representing a send signal action

Example 29: A metaclass representing an output pin

MetaModelAgent – Metamodeling © 2023 Adocus AB page 37 of 77

37

37

10 Defining Connectors

Transitions in state machines, object and control flows in activities and messages are all
kind of “connectors” or “edges” that you may find hard to define properly in a metamodel.
This chapter will give guidance on how constraints on these kinds of connectors and the
nodes they may connect, should be defined.

10.1 Transitions & Guards

Transitions connect states in a state chart diagram. Transitions are however owned by an
enclosing Region element, in the same way as states are owned by the region. To
express the existence of transitions within a region a composite aggregation should be
used.

To express that a state (normal state, pseudo state or final state) has incoming and/or
outgoing transitions, plain navigable associations are used, where the role name denotes
incoming or outgoing, and where the multiplicity denotes the valid number of transitions.

Example 30: A Region may contain arbitrary number of states and transitions
and a State should have at least one incoming and one outgoing
transition.

You may notice that a metaclass representing a state may have several plain
associations with the same role name1 referring to metaclasses representing different
kind of transitions. Logical AND, OR, XOR (exclusive-OR) and NOT constraints can be
achieved in the same way as described in chapter 7.3.

If you want to express what kind of states that are related to a specific kind of transition,
you can express that in the metamodel by using navigable plain associations from the
transition metaclass to metaclasses representing states defining the source and targets of
a transition. In those cases, the role name source and target should be used.

Example 31: A final transition must have a final state as the target and a final
state must have at least one incoming final transition.

1 This may lead to a live validation warning that you should neglect.

MetaModelAgent – Metamodeling © 2023 Adocus AB page 38 of 77

38

38

A constraint on a transition in UML2 represents a guard on that transition.

Constraints are not generally supported in the current version of the metamodel

notation. Instead, there is a dedicated metaclass stereotype «guard» to be used for

representing guards.

Example 32: A transition may have a guard

10.2 Object and Control Flows

Object and controls flows are the connecting elements within an activity. They are owned
by activities or by structured activity nodes. The same metamodeling principles as for
transitions also holds for object and control flows.

Example 33: A Send Object Action must have at least one outgoing Object Flow
where a central buffer is the target.
A Central Buffer must have at least one incoming Object Flow,
where a Send Object Action is the source.

10.3 Messages

A Message is the connecting elements within an interaction. It is owned by the interaction
but connects the lifelines within the interaction. The same metamodeling principles as for
transitions also holds for messages.

MetaModelAgent – Metamodeling © 2023 Adocus AB page 39 of 77

39

39

Example 34: An Interaction must have at least two lifelines and one message.
A Lifeline receives and sends arbitrary number of messages.
A Message has a lifeline as both a sender and receiver (however it
does not have to be the same lifeline)

Example 35: Messages

10.4 More about Connector Constraints

As you have seen, it is possible to define constraints for both the source and target side
of a transition, flow or message connector, and also constraints on outgoing and incoming
connectors from the different kind of nodes. The constraints are expressed by association
ends which may as well be showed as attributes in a metamodel.

The association ends should have a multiplicity, indicating how many participating
connectors which are valid.

Important: The absence of an association end representing a connector constraint does
not indicate that there are no valid connectors. Instead, it means that any kind of any
numbers of connectors are valid. If you want to express that a specific kind of connector
is invalid, you should use 0..0 multiplicity.

The association ends may also be given an explicit severity stereotype; «key», «rule»,
«rec» or «information», with the same semantics as expected. If the stereotype is
omitted, it is a rule. Unfortunately stereotypes on association ends will not be visible in a
diagram.

There may be several association ends with the same name indicating different kind of
possible connectors. You may use XOR-constraints between these association ends, as
described in chapter 7.3, and ordering numbers of the corresponding associations, as
described in chapter 7.2.

MetaModelAgent – Metamodeling © 2023 Adocus AB page 40 of 77

40

40

11 Defining Custom Diagrams

11.1 Custom diagrams in Papyrus extensions

Domain-specific modeling extensions to Papyrus may have defined custom diagrams
based on standard UML-diagrams. To represent such a custom diagram in a metamodel
add a metaclass attribute with the name diagramKind and a value that denotes the
name of the custom diagram kind.

The simplifies way to find out the correct value of the diagramKind attribute is to activate
a model containing a custom diagram towards the built-in General Modeling Guidelines
and look for the current value of the diagramKind property in the MMA Property View.

12 Defining Diagram Content

12.1 Classifier Diagrams and Object Diagrams

By classifier diagrams we mean class diagrams, component diagrams, use-case
diagrams, deployment diagrams and freeform diagrams.

Constraints on which kind of elements that should be visible in a classifier diagram or in
an object diagram are defined by establishing navigable shared aggregation relationships
from the metaclass representing the diagram towards the metaclasses representing the
items that can be visible in the diagram.

Multiplicity should be used to denote valid numbers of visible elements.

Example 36: A class diagram with the name “Content” must contain at least one
visible actor package and one visible use case package.

The severity can be specified by setting the shared aggregation stereotype to either
«rule», «rec» or «info». If no stereotype is given, the shared aggregation represents a
mandatory rule.

Logical AND, OR, XOR (exclusive-OR) and NOT constraints can be achieved in the same
way as described in chapter 7.3.

References to Surrounding Elements

When defining constraints on diagram content, you can also define in more details which
elements that should exist in the diagram. You may refer to the element owning the
diagram or the owning elements child elements. This kind of constraints is achieved by
connecting UML constraint elements to the shared aggregations.

MetaModelAgent – Metamodeling © 2023 Adocus AB page 41 of 77

41

41

Example 37: An Overview Diagram must at least show all Use Cases in the
same Use-Case Package holding the diagram.
A Local View diagram must at least show the Use-Case that holds
the diagram.

Summary of the legal keywords in the body of UML-constraints and their semantics:

Constraint Body Semantics for the item property

SIBLINGS Indicates that at least all elements of the target kind in the same
context as the diagram (its siblings) must be visible in the diagram

PARENT Indicates that at least the element holding the diagram must be
visible in the diagram.

12.2 Other Diagrams

Constraints on the content of other diagrams, e.g., composite structure diagrams,
communication diagrams, sequence diagrams, activity diagrams and state-chart
diagrams should not explicitly be defined. The contents of these diagrams are implicitly
defined by defining constraints on the contents in the elements that holds the diagrams,
e.g., classifiers, interactions, actions, and state machines.

MetaModelAgent – Metamodeling © 2023 Adocus AB page 42 of 77

42

42

13 Combined Property Constraints

If you have element properties, which values, or significance is dependent on other
properties in the same element. You may express that in metamodel by defining one
metaclass for each valid combination of the properties and letting all those metaclasses
be a sub-class to an abstract metaclass representing the overall concept.

This solution is clumsy for the end user because he will be aware of all the different kind
of metaclasses. For example, they all will appear in the Add-menu.

A better solution is to capture the overall concept in an interface element in the
metamodel and letting all the metaclasses representing the different valid combinations
be declared as private and have interface realization relations to that interface.

Example 38: A class may be private or public and abstract or concrete, but not
abstract and public at the same time. If the class is abstract, it
cannot be a leaf. If the class is public the documentation is
significant and it cannot be empty.

The benefit of using interfaces in the metamodel is that the end-user will only be aware of
the concept the interface represents. All private metaclasses realizing the interface is
hidden for the end-user. The effect in MetaModelAgent is that only one add-option will be
available and that the MetaModelAgent Add-wizard and the MetaModelAgent Property
Tab will dynamically toggle the presence, change valid values, and presented guidance
for each property, to reflect the valid combinations.

If you add the operation default() to one of the private meta-classes, that meta-class will
be chosen as the default variant in the add-wizard.

13.1 Restrictions on using Interfaces

There are some important restrictions in using interfaces in the metamodel.

• All metaclasses realizing an interface must be declared as private.

• A private metaclass must only realize one interface.

• All private metaclasses realizing an interface must have the same set of
properties defined as «key»-properties.

• An interface cannot have any composite aggregations to metaclasses.

MetaModelAgent – Metamodeling © 2023 Adocus AB page 43 of 77

43

43

14 Constraint Constraints

As default, UML Constraints are regarded to be valid anywhere in a model. This may
however be overridden in a metamodel, as described below.

14.1 Defining Constraint Constraints

If a metamodel contains at least one metaclass with stereotype «constraint», constraints
are not valid anywhere in the model. Constraints will then only be valid in those positions
that are explicitly expressed in the metamodel with «constraint» metaclasses,
composited by metaclasses that represents valid owners of the constraints.

If a «constraint» metaclass exist in a metamodel without being composited by any other
metaclass, constraints will be invalid anywhere in the model.

If no «constraint» metaclass exist in a metamodel, MetaModelAgent will upon activation
automatically add a «constraint» metaclass to the internal representation of the
metamodel and add all compositions needed for Constraints to be valid in any position in
the model, making it possible to add constraints using the MMA Add Wizard. The
metaclass will have all standard Constraints properties defined as well, making it possible
to edit the Constraint properties using the MMA Property View.

MetaModelAgent – Metamodeling © 2023 Adocus AB page 44 of 77

44

44

15 UML Real-Time Modeling Support

This chapter only applies for those who use MetaModelAgent for UML-RT in RSARTE or
HCL RTist.

There is a built-in metamodel in MetaModelAgent for UML-RT in those host tools that
covers the whole language. However, if there is a need to restrict or adapt the usage of
UML-RT a user-specific metamodel can be developed and applied. This chapter covers
what need be known to develop a custom metamodel for UML-RT.

15.1 Protocols

A protocol is a UML-RT concept that is not represented as a single UML-element. A
protocol is represented by a package, containing a collaboration and two interfaces.
However, when looking on a protocol in the project explorer it seems like it is only a
collaboration, stereotyped as «protocol» from the UML RealTime-profile, the other
elements are hidden from the user.

MetaModelAgent has native support for protocols by providing the «protocol»-stereotype
in the MMA-profile. When developing metamodels you therefore can express the
occurrence of a protocol by a metaclass with the stereotype «protocol». When using the
Add-wizard to create a new protocol, a complete protocol representation is being created
in the model.

15.2 Call Events

In Events and Out Events are allowed in a protocol in UML-RT. These events are
represented by metaclasses with the stereotype set to «callEvent» and the metaclass
attribute stereotypes with the default value set to UMLRealTime::InEvent and
UMLRealTime::OutEvent respectively.

Example 39: A metamodel representation of a Protocol that may have arbitrary
number of In Events and Out Events.

The UML-RT representation of an event also comprises a corresponding interface
operation that is hidden from the user in the project explorer. The name of the event as
seen in the project explorer is the name of the corresponding operation. The name of the
event is always empty. This can be seen in the general tab of the Property View for the
event.

Defining a name rule of an event in the metaclass means defining a name rule of the
corresponding hidden operation. MetaModelAgent will therefore show the operation name
as the event name in wizards and in the MMA Property View.

MetaModelAgent – Metamodeling © 2023 Adocus AB page 45 of 77

45

45

15.3 Capsules

A capsule is a concept in UML-RT that is represented by a class with the stereotype
«Capsule» from the UML RealTime-profile.

However, when adding a new capsule using RSARTE or HCL RTist. The tool
automatically adds a structure diagram and a state machine. Within the state machine a
state chart diagram and a region are also automatically created, this is visible in the
project explorer.

The nested elements of a capsule are crucial for the capsule to behavior properly in a
model.

MetaModelAgent has no built-in support for automatically generating the elements within
a capsule. Instead, you are supposed to express the correct element structure of a
capsule in your metamodels.

The diagram below shows how you should represent a capsule in a metamodel, for UML-
RT to behavior correctly.

Example 40: Minimal representation of a UML-RT Capsule in a metamodel. You
may notice that the diagram names should be empty. RSARTE
and HCL RTist will present derived names in the project explorer.

MetaModelAgent – Metamodeling © 2023 Adocus AB page 46 of 77

46

46

16 Organizing Metamodels

A metamodel defines the domain-specific language for a specific type of model. Normally,
several different metamodels are needed to define the language for different kind of
models. Several versions of the same metamodel may also be necessary to handle in
parallel.

Each metamodel should be contained in an own UML-model. The model holding the
metamodel should have the stereotype «metaModel».

16.1 Metaclass packages

The metaclasses within a metamodel, can be structured into arbitrary number of
packages with the stereotype «metaClassPackage». These sub-packages may also be
nested. The name of these packages will be visible in context submenus, in case of a
large set of metaclasses and in the navigation pane in web published guidelines.

The default order of the packages in context submenus and in published guidelines will
be alphabetic. However, the alphabetic order can be overridden by setting a value of the
package´s keyword property.

Besides the owned comment of a metamodel or metaclass package, that are used to
capture a description of what the model or package contains, additional comments can be
added which will appear in web published guidelines. Each additional comment should
have a keyword and a body. The keyword will be displayed as a header and the content
of the body will be the body beath the header. HTML may be used in the body.

IMPORTANT: Keywords on comments cannot be entered using the standard UI or using
the MetaModelAgent UI. Additional comments with keywords must therefore be added by
using the UML2 API in a user-defined plugin.

16.2 Import between Metamodels

A metamodel can import the content from another metamodel or from a metaclass
package within another metamodel. This is expressed by a package import relationship
between the packages holding the metamodels.

A metamodel can import from arbitrary number of other metamodels.

Example 41: A Metamodel importing from a metaclass package in another
metamodel.

The import mechanism is useful to reuse metaclass definitions and enumerations
between several metamodels.

16.3 Extend and Adjust an Existing Metamodel

The metamodel notation used by MetaModelAgent today supports extensions of existing
metamodels using package import between metamodels and inheritance between their
metaclasses. By doing so, new concepts could easily be added in the new metamodel
based on concepts in an existing metamodel.

MetaModelAgent – Metamodeling © 2023 Adocus AB page 47 of 77

47

47

However, there is often a need for doing some adjustment, replacement or even removal
of metaclasses in the metamodel being extended. This fact is supported by two different
stereotypes on the generalization relationship and a special stereotype on metaclasses.

MetaModelAgent – Metamodeling © 2023 Adocus AB page 48 of 77

48

48

Override a Metaclass

The stereotype «abstract» on a generalization between two metaclasses means that the
generalized metaclass is regarded to be abstract. Besides that, the generalization will
have the standard semantics.

 Before After

Example 42: The metaclass “Abstract Class” will be treated as abstract and the
“Abstracting Class” will inherit all attributes, relationships and
aggregation from the “Abstract Class”, as seen in the diagram to
the right.

Replace a Metaclass

The stereotype «replace» on a generalization between two metaclasses means that the
generalized metaclass is regarded to be replaced entirely by the specialized metaclass in
all occurrences and that no attributes, operations, aggregations, generalization, or other
relationships starting from the replaced metaclass will be considered any more.

 Before After

Example 43: The “New Class” will replace the “Old Class” in all occurrences but
not inherit is attributes, aggregates and other relationships, as
seen in the diagram to the right.

MetaModelAgent – Metamodeling © 2023 Adocus AB page 49 of 77

49

49

There are a few constraints to be aware of when using the «replace» stereotype:

• A metaclass must not have more than one «replace» generalization.

• A metaclass must not be the super class of more than one «replace»
generalization at the same time.

Remove a Metaclass

The stereotype «replace» on a generalization can be combined with the stereotype
«void» on the specialized metaclass. That means that the generalized metaclass will be
replaced with nothing, e.g., it will not be considered, as if it has not exists at all.

 Before After

Example 44: The “Nothing”-class will remove the “Old Class” in all occurrences,
as seen in the diagram to the right.

There are a few constraints to be aware of when using the «void» stereotype:

• The «void» stereotype is only allowed on metaclasses that has a «replace»
generalization towards another metaclass.

• If there are any other metaclasses referring to the removed metaclass directly, for
example as target of a relationship, these metaclasses must be replaced by a
«void» metaclass as well, for the metamodel to be well-formed.

16.4 Documenting a Metamodel

A metamodel should be documented to make it easier to understand what all the
constructions defined by the metaclasses represents.

The metamodel is documented by filling in the documentation property for packages,
metaclasses and metaclass attributes within the metamodel:

• The documentation of a model holding a metamodel should explain what kind of
model the metamodel represents.

• The documentation of a metaclass package should explain what is common
between the metaclasses within the package.

• The documentation of a metaclass should explain what kind of item the
metaclass represents. As part of the documentation of a metaclass, the keyword
@SUPER can be inserted. The semantics of that keyword is that it will be
replaced by the metaclass documentation from all inherited super metaclasses to
the current metaclass.

MetaModelAgent – Metamodeling © 2023 Adocus AB page 50 of 77

50

50

• The documentation of a metaclass operation named suppressAdd() should
explain why the corresponding elements cannot be added using MetaModelAgent
and preferable some tips on how to add those elements.

• The documentation of a metaclass attribute should explain how to use the
property defined by the attribute.

• For non-trivial property rules defined by the default values in metaclass attributes,
you can provide an explicit explanation of valid values by entering the explanation
in the Default value name property of the metaclass attribute. This property is
derived from the name property of the attribute’s default value.

RSAD/RSARTE and HCL RTist only: Besides documenting a metamodel in text, free-
form diagrams can be used to show graphical examples on how the domain-specific
language should be used. One or several free-form diagrams can be created in a
metaclass package or in a metaclass. Both the name of the diagram and its
documentation are presented in the published metamodel.

16.5 Using a Metamodel

A dependency relationship should be used to specify that a model or a package is an
instance of a specific metamodel.

Example 45: The use-case model “Order and Storage System” is an instance of
the metamodel “Use-Case Modeling Guidelines”

Several metamodels can in this manner be assigned to the same model or package.
Each such metamodel must hold the complete DSML but can be focused on different
topics.

If the metamodel is deployed in a plugin and registered using the extension point
provided by MetaModelAgent, you can omit the dependency-relationship as
MetaModelAgent will found out which metamodel to use for which model. See chapter 18
for details.

You may use the built-in meta-metamodel that comes with MetaModelAgent for any user-
defined metamodel without an established dependency relationship. You may also use
the built-in General UML Guidelines metamodel for any user-defined model without any
established dependency relationship, see next chapter for details.

Support for Marking Models

If the concept of marking models is used, you may assign a metamodel to the marking
model instead of assigning it to the target of the marking model. If the marking model is
opened when activating MetaModelAgent for the target model, the metamodel is
available, otherwise not.

MetaModelAgent – Metamodeling © 2023 Adocus AB page 51 of 77

51

51

Example 46: The metamodel is assigned to a marking model and not to the
target model.

MetaModelAgent – Metamodeling © 2023 Adocus AB page 52 of 77

52

52

17 Validating a metamodel

There are several complementary techniques for validating a metamodel to make sure
that it will work as expected in MetaModelAgent.

This chapter describes the different techniques and how they are used.

17.1 Built-in model validation (RSAD/RSARTE and HCL RTist)

RSAD/RSARTE and HCL RTist comes with a built-in model validation feature that checks
a UML-model for some standard UML violations. This model validation feature can also
be used for metamodels as they should also conform to standard UML.

The model validation feature is initiated by selecting a model in the explorer view and
then invoke Model→Run Validation from the main menu. Any problem will be listed in the
standard Eclipse Problem View.

As the metamodel notation make use of some specific naming conventions for attributes
and enumeration literals, you may get warnings that should be ignored.

17.2 Using the meta-metamodel

MetaModelAgent comes with a built-in meta-metamodel that contains a lot of rules for
how metamodels should be constructed.

To validate the metamodel using the meta-metamodel, select the metamodel in the
explorer view and select MetaModelAgent→Activate→Meta-metamodel from the context
menu. Any problem will be listed in the MMA Problem View.

17.3 Using the Metamodel validation

MetaModelAgent has a built-in metamodel-validation feature that checks for ambiguities,
conflicts, and unused concepts in a metamodel.

You may notice that this metamodel validation feature is still in a beta stage, that means
that the presentation of the validation result is very rough and not user-friendly, the
presentation will be improved in future releases of MetaModelAgent.

• To validate a whole metamodel using the built-in metamodel validation feature,
select the metamodel in the explorer view and select
MetaModelAgent→Activate→Validate Metamodel (Beta stage) from the context
menu. Any problem will be listed in the MetaModelAgent section of the standard
Eclipse Console View.

• A comparison for ambiguities between the properties of two single metaclasses is
performed by selecting the two metaclasses from the same metamodel in the
context menu and then MetaModelAgent→Activate→Compare Metaclasses
(Beta stage) from the context menu. The result will be a popup-dialog where
overlaps between each restricted property definition are presented.

• A comparison for ambiguities in the generalization hierarchies below two
metaclasses is performed by selecting the two metaclasses from the same
metamodel in the context menu and then MetaModelAgent→Activate→Compare
Metaclass Generalization Trees (Beta stage) from the context menu. The result
will be a popup-dialog where overlapping metaclasses from the two hierarchies
will be listed.

MetaModelAgent – Metamodeling © 2023 Adocus AB page 53 of 77

53

53

If the two metaclasses to be compared resist in two different metamodels, where one
metamodel imports the other one, the metaclass selection must be made in a diagram,
not in the explorer view, and the metaclass in the importing metamodel must be selected
prior to selection of the metaclass in the imported metamodel. Otherwise, there might be
some metamodel error dialogs appearing.

The reliability of the metamodel validation feature is not 100%. There might be invalid
problems presented as well as missing problems in the validation result. Especially the
use of regular expression in property rules may result in invalid problems being
presented. The validation result should therefore only be treated as an indication of
problems that must be further inspected manually.

17.4 Using a test model

Some problems in the metamodel may only be detected by testing the metamodel by
creating a model, activate the model using the metamodel and the final variant of
validating a metamodel is to use MetaModelAgent and the metamodel to create and
populate a model using the MMA Add Wizard and the Property View.

Create a new model based on the metamodel by using the MMA Create Model Wizard
and then try to populate the model with all kinds of valid nested elements using the MMA
Add Wizard. Try to edit the properties of each added element using the MMA Property
View. For more information on how to use the wizards and views in MetaModelAgent, see
the User Manual. Any metamodel-related problem will be revealed by popup-dialogs or
by problems in the MMA Problem View.

Use the standard UI in the host tool for negative testing. Add elements and property
values that are supposed to be invalid according to the metamodel and check that a
corresponding problem is reported in the MMA Problem View.

This is a strenuous task that might be needed to make sure that the metamodel behaves
as expected. Especially the application of profiles and usage of stereotypes, user defined
properties and regular expressions should be tested this way.

17.5 Reviewing the metamodel

The final variant of validating a metamodel is to use the Guideline Publisher in
MetaModelAgent to produce a web site of the metamodel that can be manually
inspected.

To generate a web site of the metamodel, select the metamodel in the explorer view and
then select MetaModelAgent→Publish Guidelines… from the context menu to bring up
the Guidelines Publishing wizard, see the User Manual for details.

The resulting web site will provide a readable textual representation of the metamodel. A
manual review can be used to detect invalid rules and missing rules.

.

MetaModelAgent – Metamodeling © 2023 Adocus AB page 54 of 77

54

54

18 Deploying a Metamodel

18.1 As a workspace model

The metamodel is deployed as any other model file that should be accessible by several
users.

1. Remove the reference from the metamodel to the meta-metamodel so that the
meta-metamodel is not needed in the workspace for the users.

2. Put the metamodel file in a common read-only area on your file system.

3. Make sure that each user imports the metamodel into their workspaces.

4. Optionally, publish the guidelines from the metamodel on your intranet.

You may notice that if your metamodel does not contain any «constraint»
metaclass, MetaModelAgent will automatically add a «constraint» metaclass as a
valid nested element to all other metaclasses representing elements that can hold
a constraint. This will be visible in the web published metamodel.

The users are ready to use MetaModelAgent and the metamodel to support them in using
the DSML.

18.2 In a plugin

An alternative way to deploy a metamodel is to include it as a model library in an Eclipse
plug-in. The plug-in is then installed for all users that should use the metamodel. The
benefit of this alternative of this solution is that the metamodel will not be visible in the
users workspace. The drawbacks are that menu operations on the metamodel, for
example creating a new model based on the metamodel is not available.

For a metamodel to become a model library, just add the stereotype «modelLibrary» to
the model and register the model library using the following extension points:

Tool Extension Point

RSAD/RSARTE
and HCL RTist

com.ibm.xtools.uml.msl.UMLLibraries

Eclipse Papyrus org.eclipse.papyrus.uml.extensionpoints.UMLLibrary

MetaModelAgent – Metamodeling © 2023 Adocus AB page 55 of 77

55

55

A Metamodel deployed in a plugin or in the workspace could also be registered into
MetaModelAgent by the same plugin using the extension point
com.adocus.mma.metamodel.provider.

Registering the metamodel requires that you provide an implementation of the Java
interface com.adocus.mma.api.IMetaModelProvider.

The interface defines a single method, getMetaModel(), that takes an

EModelElement object as the only parameter and returns the name of the

corresponding metamodel to be used for that element.

If the metamodel to be referred is stored in the user’s workspace, the name returned
should be the file path to the metamodel-file following the following syntax:

platform:/resource/project-name/metamodelfile.emx (RSAD/RSARTE)

platform:/resource/project-name/metamodelfile.uml (Papyrus)

By registering a metamodel in MetaModelAgent, there will be no need for a dependency
relationship from the user’s models to the metamodel. When MetaModelAgent is about to
activate your model, the corresponding metamodel, according to your implementation of
the getMetaModel()-method, will automatically be used.

For more information on model libraries and plug-ins, please refer to the online
documentation for your specific host tool.

MetaModelAgent – Metamodeling © 2023 Adocus AB page 56 of 77

56

56

19 Models included in MetaModelAgent

When MetaModelAgent has been installed, the following profile and models are available,
however they are not visible in the workspace.

19.1 MetaModelAgent Profile

The profile provides stereotypes for metamodels and should be applied to all metamodels
that should be used by MetaModelAgent. See Appendix A for a summary of all
stereotypes.

19.2 Meta-Metamodel

This meta-metamodel is the metamodel for metamodels, i.e., it defines the DSML for
metamodels. All user-defined metamodels may be validated towards the meta-
metamodel. There is no need for a dependency from the user-defined metamodel to the
meta-metamodel to be able to use MetaModelAgent.

19.3 General UML Guidelines Metamodel

This metamodel is a complete metamodel for standard UML, as supported by
MetaModelAgent. An end user may use MetaModelAgent with this metamodel for any
kind of UML model. There is no need for a dependency between the model and the
General UML Guidelines metamodel to be able to use MetaModelAgent.

19.4 General UML-RT Guidelines Metamodel

This metamodel is an extension to the General UML Guidelines metamodel adding UML-
RT specific concepts such as Capsules and Protocols. This metamodel is only available
in MetaModelAgent for RSAD/RSARTE and HCL RTist.

There is no need for a dependency between an UML-RT model and the General UML-RT
Guidelines metamodel to be able to use MetaModelAgent.

19.5 Metamodel Template

This is a model template of a metamodel which can be used as a base when developing
a user-defined metamodel. The template is available in the New Model Wizard.

MetaModelAgent – Metamodeling © 2023 Adocus AB page 57 of 77

57

57

Appendix A Stereotypes

This is a summary of all stereotypes that are defined in the MMA UML-profile to be used
when defining metamodels for MetaModelAgent.

Class stereotypes representing UML elements

The following stereotypes are applicable for classes which are metaclasses and
represents UML elements:

Category Stereotypes

Containers «model» «package» «profile»

Classifiers «activity»
«actor»
«artifact»
«association»
«class»
«collaboration»
«communicationPath»
«component»
«dataType»

«deploymentSpecification»
«device»
«enumeration»
«executionEnvironment»
«extension»
«informationItem»
«interaction»
«interface»
«node»

«opaqueBehavior»
«primitiveType»
«protocol»1
«protocolStateMachine»
«signal»
«stateMachine»
«stereotype»
«useCase»

Features «attribute»
«associationEnd»
«collaborationUse»
«connector»
«connectorEnd»

«extensionEnd»
«extensionPoint»
«operation»
«port»
«parameter»

«property»
«reception»
«templateParameter»
«templateSignature»

State Machine
elements

«finalState»
«guard»
«protocolTransition»

«pseudoState»
«state»

«transition»
«trigger»

Activity
elements

«action»
«activityPartition»
«controlFlow»

«connectionPointReference»
«controlNode»
«objectFlow»

«pin»
«objectNode»
«region»
«structuredActivityNode»

Interaction
elements

«combinedFragment»
«gate»

«interactionUse»
«message»

«lifeline»

Relationships «abstraction»
«componentRealization»
«dependency»
«deployment»
«elementImport»
«extend»

«generalization»
«include»
«informationFlow»
«interfaceRealization»
«manifestation»
«packageImport»

«packageMerge»
«protocolConformance»
«realization»
«substitution»
«templateBinding»
«usage»

Others «callEvent»
«constraint»

«instanceSpecification»
«slot»

1 Protocols can only be used in IBM RSARTE and HCL RTist.

MetaModelAgent – Metamodeling © 2023 Adocus AB page 58 of 77

58

58

Class stereotypes representing Diagrams

Tool support Stereotypes

All tools «activityDiagram»
«communicationDiagram»
«componentDiagram»
«deploymentDiagram»

«InteractionOverviewDiagram»
«sequenceDiagram»
«stateChartDiagram»
«structureDiagram»

«TimingDiagram»
«useCaseDiagram»

RSAD,
RSARTE
and HCL RTist

«freeformDiagram»
«objectDiagram»

Papyrus «packageDiagram»
«requirementDiagram»

«blockDefinitionDiagram»
«InternalBlockDiagram»

«profileDiagram»
«parametricDiagram»

Other Class Stereotypes

Besides the stereotypes representing UML elements and diagrams there are two other
stereotypes applicable to metaclasses:

Stereotype Description

«item» Represents an arbitrary UML-item and is only applicable for abstract metaclasses.

«void» Denotes the removal of a metaclass when combined with a «replace» generalization.

Attribute Stereotypes

The following stereotypes are applicable for metaclass attributes representing properties:

Stereotype Description

«key» Represents a key property for the items the metaclass defines. The attribute value
must be fulfilled for the item to be considered an instance of the meta class.

«rule» Represents a mandatory rule for the items the metaclass defines. It is regarded to
be an error if this value is not fulfilled.

«rec» Represents a recommendation for the items the metaclass defines. It is regarded
to be a warning if this value is not fulfilled.

«info» Represents an information issue for the items the metaclass defines.

Aggregation Stereotypes

The following stereotypes are applicable for composite and shared aggregations between
metaclasses:

Stereotype Description

«rule» A mandatory rule for the items the metaclass defines.
It is regarded to be an error if this value is not fulfilled.

«rec» A recommendation for the items the metaclass defines.
It is regarded to be a warning if this value is not fulfilled.

«info» An information issue for the items the metaclass defines.

Aggregations without any applied stereotype are regarded to be a mandatory rule,
therefore the «rule»-stereotyped may be omitted.

MetaModelAgent – Metamodeling © 2023 Adocus AB page 59 of 77

59

59

Generalization Stereotypes

The following stereotypes are applicable for generalizations between metaclasses.

Stereotype Description

«abstract» The generalized metaclass is regarded as abstract, besides that the standard
generalization semantics applies.

«replace» The generalized metaclass is replaced by the specialized metaclass in all
occurrences. No attributes, aggregations or other relationships are owned by the
specialized metaclass.

Generalizations without any applied stereotype have standard generalization semantics.

Container Stereotypes

Stereotype Applicable for Description

«metaModel» Model The model defines a metamodel. This stereotype is
mandatory for all models in the profile.

«metaClassPackage» Package The package contains metaclasses. This stereotype
is mandatory for all packages in the profile.

MetaModelAgent – Metamodeling © 2023 Adocus AB page 60 of 77

60

60

Appendix B Meta Class Attributes

Attributes representing standard UML element properties

The table below shows valid metaclass attributes representing standard UML element
properties. Each attribute represents a specific property for the kind of item the metaclass
represents. Attributes where the type is a UML Element can alternatively be modeled as
an association to the metaclass representing the type. For more information see ref. [1].

UML Elements in italic style in table denotes abstract concepts.

Attribute Applicable for Type

association Association End Association

abstract Behavioral Feature Boolean

abstract Classifier Boolean

active Class Boolean

aggregation Property Aggregation Kind Enumeration

behavior Port Boolean

behavior Call Behavior Action Behavior

body Opaque Behavior String

classifier Instance Specification String

composite State Boolean

concurrency Behavioral Feature Call Concurrency Kind Enumeration

connectorKind Connector Connector Kind Enumeration

constrainedElement Constraint Element (multi-valued)

context Behavior String

contract Connector Behavior (multi-valued)

control Pin Boolean

controlType Object Node Boolean

conveyed Information Flow Classifier (multi-valued)

covered Combined Fragment Lifeline (multi-valued)

defaultValue Property String

defaultValue Parameter String

definingEnd Connector End Property

definingFeature Slot Property

derived Association Boolean

derived Property Boolean

derivedUnion Property Boolean

direction Parameter Parameter Direction Kind Enumeration

edge Activity Partition Activity Edge (multi-valued)

effect Parameter Parameter Effect Kind Enumeration

entry Connection Point Reference Pseudo State

event Trigger String

exit Connection Point Reference Pseudo State

exception Parameter Boolean

MetaModelAgent – Metamodeling © 2023 Adocus AB page 61 of 77

61

61

Attribute Applicable for Type

fileName Model String

guard ActivityEdge String

incoming ActivityNode ActivityEdge (multi-valued)

inGroup ActivityNode ActivityGroup

inPartition ActivityNode ActivityPartition

incoming Vertex Transition

interactionOperator Combined Fragment InteractionOperatorKind Enumeration

keywords Element String (multi-valued)

language Guard String

language Opaque Behavior String

leaf Redefinable Element Boolean

message Gate Message

messageKind Message Message Kind Enumeration

messageSort Message Message Sort Enumeration

method BehavioralFeature Behavior

multicast Object Flow Boolean

multiplicity Multiplicity Element String

multireceive Object Flow Boolean

mustIsolate Structured Activity Node Boolean

name Named Element String

name Diagram String

navigable Property Boolean

node Activity Partition Activity Node (multi-valued)

operation Call Event Operation

operation Call Operation Action Operation

ordered Multiplicity Element Boolean

ordering Object Node Ordering Kind Enumeration

orthogonal State Boolean

outgoing Vertex Transition (multi-valued)

outgoing Activity Node Activity Edge

partWithPort Connector End Property

port Trigger Port

pseudoStateKind PseudoState PseudoState Kind Enumeration

query Operation Boolean

raisedException Behavioral Feature Type (multi-valued)

readOnly Activity Boolean

readOnly Property Boolean

realizingActivityEdge Information Flow ActivityEdge (multi-valued)

realizingConnector Information Flow Connector (multi-valued)

realizingMessage Information Flow Message (multi-valued)

receiver Message Message End (multi-valued)

receives Lifeline Message (multi-valued)

redefinedBehavior Behavior Behavior

MetaModelAgent – Metamodeling © 2023 Adocus AB page 62 of 77

62

62

Attribute Applicable for Type

redefinedClassifier Classifier Classifier

redefinedConnector Connector Connector

redefinedEdge ActivityEdge ActivityEdge

redefinedInterface Interface Interface

redefinedNode ActivityNode ActivityNode

redefinedOperation Operation Operation

redefinedPort Port Port

redefinedProperty Property Property

redefinedState State State

redefinedTransition Transition Transition

redefinitionContext Redefinable Element Redefinable Element

reentrant Behavior String

referred Protocol Transition Operation (multi-valued)

refersTo Interaction Use Interaction

render (multi-valued)

represented Information Item Classifier (multi-valued)

represents Lifeline String

role Connector End Connectable Element

selection Object Node Behavior

selection Object Flow Behavior

service Port Boolean

sender Message Message End

sends Lifeline Message (multi-valued)

signal Send Signal Action Signal

signal Reception Signal

signature Message String

signature Template Binding Template Signature

simple State Boolean

singleExecution Activity Boolean

source Activity Edge Activity Node

source Directed Relationship Element

source Transition Vertex

specification Guard String

specification Behavior String

static Feature Boolean

stereotypes Element String (multi-valued)

stream Parameter Boolean

subject Use Case Classifier (multi-valued)

submachineState State Boolean

substitutable Generalization Boolean

transitionKind Transition Transition Kind Enumeration

target Activity Edge Activity Node

target Directed Relationship Element

MetaModelAgent – Metamodeling © 2023 Adocus AB page 63 of 77

63

63

Attribute Applicable for Type

target Transition Vertex

transformation Object Flow Behavior

type Typed Element Type

type Connector Association

unique Multiplicity Element Boolean

unmarshall Accept Event Action Boolean

upperBound Object Node Integer

value Value Pin String

value Enumeration Literal String

value Slot String

weight Activity Edge String

viewKind Diagram String

viewpoint Model String

visibility Package Import Visibility Enumeration

visibility Element Import Visibility Enumeration

visibility Named Element Visibility Enumeration

Enumeration values

List of valid values of the enumeration types in the table above

Enumeration Valid values

aggregation composite, none, shared

concurrency concurrent, guarded, sequential

connectorKind assembly, delegation

controlNodeKind activityFinalNode, decisionNode, finalNode, flowFinalNode, forkNode,
initialNode, joinNode, mergeNode

direction in, out, inout

effect create, delete, read, update

interactionOperator Alt, assert, break, consider, critical, ignore, loop, neg, opt, par, seq,
strict

messageKind complete, found, lost, unknown

messageSort asynchCall, asynchSignal, createMessage, deleteMessage, reply,
synchCall

objectNodeKind activityParameterNode, centralBufferNode, dataStoreNode,
expansionNode

ordering fifo, lifo, ordered, unordered

pinKind actionInputPin, inputPin,outputPin,valuePin

pseudoStateKind choice, deepHistory, entryPoint, exitPoint, fork, initial, join, junction,
shallowHistory, terminate

transitionKind external, internal, local

visibility public, protected, private, package

http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/ActivityFinalNode.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/DecisionNode.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/FinalNode.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/FlowFinalNode.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/ForkNode.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/InitialNode.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/JoinNode.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/MergeNode.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/ActivityParameterNode.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/CentralBufferNode.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/DataStoreNode.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/ExpansionNode.html

MetaModelAgent – Metamodeling © 2023 Adocus AB page 64 of 77

64

64

MetaModelAgent – Metamodeling © 2023 Adocus AB page 65 of 77

65

65

Special attributes

Beside the attributes representing standard UML properties, some special attributes have
been defined in the metamodel-notation. These are listed below.

Attribute Applicable for Type Description

documentation Element String Represents the body property of the first owned
comment of an element.

actionKind Action Enumerated
(read-only)

Represents the kind of action that the metaclass
represents.
See valid values in table below.

controlNodeKind Control Node Enumerated
(read-only)

Represents the kind of control node that the
metaclass represents.
See valid values in table below.

fileName Package String
(read-only)

represents the file name that are used to store
the model (or package, if the model is
fragmented)

ObjectNodeKind Object Node Enumerated
(read-only)

Represents the kind of object node that the
metaclass represents.
See valid values in table below.

pinKind Pin Enumerated
(read-only)

Represents the kind of object node that the
metaclass represents.
See valid values in table below.

parent Element Element Can be used to explicitly represent the parent of
the element. Often combined with «key»
stereotype to indicate that the parent (owner)
must be fulfilled for an element to match.

structuredActivity
NodeKind

Structured
Activity

Enumerated
(read-only)

Represents the kind of structured activity node
that the metaclass represents.
See valid values in table below.

upper Multiplicity
Element

String The upper level of a multiplicity, an alternative to
multiplicity.

lower Multiplicity
Element

String The upper level of a multiplicity, an alternative to
multiplicity.

Enumeration values

List of valid values of the enumeration types in the table above

Enumeration Valid values

actionKind acceptCallAction, acceptEventAction, addStructuralFeatureValueAction,
addVariableValueAction, broadcastSignalAction, callBehaviorAction,
callOperationAction, clearAssociationAction, clearStructuralFeatureAction,
clearVariableAction, conditionalNode, createLinkAction, createLinkObjectAction,
createObjectAction, destroyLinkAction, destroyObjectAction, expansionRegion,
loopNode, opaqueAction, raiseExceptionAction, readExtentAction,
readIsClassifiedObjectAction, readLinkAction, readLinkObjectEndAction,
readLinkObjectEndQualifierAction, readSelfAction, readStructuralFeatureAction,
readVariableAction, reclassifyObjectAction, reduceAction,
removeStructuralFeatureValueAction, removeVariableValueAction, replyAction,
sendObjectAction, sendSignalAction, sequenceNode, startClassifierBehaviorAction,
structuralFeatureAction, structuredActivityNode, testIdentityAction,
unmarshallAction, valueSpecificationAction, writeStructuralFeatureAction

controlNodeKind activityFinalNode, decisionNode, finalNode, flowFinalNode, forkNode, initialNode,

http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/AcceptCallAction.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/AcceptEventAction.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/AddStructuralFeatureValueAction.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/AddVariableValueAction.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/BroadcastSignalAction.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/CallBehaviorAction.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/CallOperationAction.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/ClearAssociationAction.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/ClearStructuralFeatureAction.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/ClearVariableAction.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/ConditionalNode.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/CreateLinkAction.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/CreateLinkObjectAction.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/CreateObjectAction.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/DestroyLinkAction.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/DestroyObjectAction.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/ExpansionRegion.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/LoopNode.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/OpaqueAction.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/RaiseExceptionAction.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/ReadExtentAction.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/ReadIsClassifiedObjectAction.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/ReadLinkAction.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/ReadLinkObjectEndAction.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/ReadLinkObjectEndQualifierAction.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/ReadSelfAction.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/ReadStructuralFeatureAction.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/ReadVariableAction.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/ReclassifyObjectAction.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/ReduceAction.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/RemoveStructuralFeatureValueAction.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/RemoveVariableValueAction.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/ReplyAction.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/SendObjectAction.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/SendSignalAction.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/SequenceNode.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/StartClassifierBehaviorAction.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/StructuralFeatureAction.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/StructuredActivityNode.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/TestIdentityAction.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/UnmarshallAction.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/ValueSpecificationAction.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/WriteStructuralFeatureAction.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/ActivityFinalNode.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/DecisionNode.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/FinalNode.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/FlowFinalNode.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/ForkNode.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/InitialNode.html

MetaModelAgent – Metamodeling © 2023 Adocus AB page 66 of 77

66

66

joinNode, mergeNode

objectNodeKind activityParameterNode, centralBufferNode, dataStoreNode, expansionNode

pinKind actionInputPin, inputPin,outputPin,valuePin

structuredActivity
NodeKind

conditionalNode, expansionRegion, loopNode, sequenceNode

Papyrus-specific attributes

The following attributes are specific for metaclasses in Papyrus:

Attribute Applicable for Type Description

diagramKind Diagram String Refers to a custom DSML-diagram kind provided by
some external DSML-extension.

rootElement Diagram Element Refers to the root element, or context, of the
diagram. An activity diagram should for example
has the root element set to an activity. If omitted in
the metamodel, the root element will automatically
be set to the owner of the diagram.

stylesheet Model String Path to a CSS-stylesheet to be used for the
diagram

stylesheet Diagram String Path to a CSS-stylesheet to be used for all the
diagrams in the model

http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/JoinNode.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/MergeNode.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/ActivityParameterNode.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/CentralBufferNode.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/DataStoreNode.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/ExpansionNode.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/ConditionalNode.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/ExpansionRegion.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/LoopNode.html
http://127.0.0.1:2397/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/SequenceNode.html

MetaModelAgent – Metamodeling © 2023 Adocus AB page 67 of 77

67

67

Appendix C Meta Class Operations

Operations on metaclasses are used to affect MetaModelAgent´s behavior.

Operation name Behavior

default Indicates the default meta-class in a context with several private meta-
classes realizing an interface.

external Instances of the metaclass are not allowed in the model.

permitAll Instances of the metaclass may contain any other kind of item without any
restrictions.

suppressAdd Instances of the metaclass should not be able to be added by using
MetaModelAgent wizards.

suppressChange Instances of the metaclass should not be able to be changed by using
MetaModelAgent wizards.

unique If the metaclass represents a classifier, this operation indicates that the
name of the classifier must be unique in the model.

If the metaclass represents a directed relationship, this operation indicates
that there must not be more than one instance of this relationship between
the same pair of elements.

This operation has no effect on metaclasses representing other elements
than classifiers and relations.

MetaModelAgent – Metamodeling © 2023 Adocus AB page 68 of 77

68

68

Appendix D Regular Expressions

Regular expressions can be used as default values for metaclass attributes.

By using regular expression, it is easy to specify complex patterns that the item
properties, represented by the metaclass attribute, must fulfill.

Meta class attribute expression Explanation

name : String = (A-Z).* The name must start with an uppercase alphabetic letter

name : String = UC\d{3}:.* The name (of a use case) must start with ‘UC’ followed by
three digits, a colon, and an arbitrary text string

The following summary is copied from the Java 2 Standard Edition 5.0 API
documentation:

Regular expression Matches

x The character x

\\ The backslash character

[abc] a, b, or c (simple class)

[^abc] Any character except a, b, or c (negation)

[a-zA-Z] a through z or A through Z, inclusive (range)

[a-d[m-p]] a through d, or m through p: [a-dm-p] (union)

[a-z&&[def]] d, e, or f (intersection)

[a-z&&[^bc]] a through z, except for b and c: [ad-z] (subtraction)

[a-z&&[^m-p]] a through z, and not m through p: [a-lq-z](subtraction)

. Any character

\d A digit: [0-9]

\D A non-digit: [^0-9]

\s A whitespace character: [\t\n\x0B\f\r]

\S A non-whitespace character: [^\s]

\w A word character: [a-zA-Z_0-9]

\W A non-word character: [^\w]

\p{Lower} A lower-case alphabetic character: [a-z]

\p{Upper} An upper-case alphabetic character:[A-Z]

\p{Alpha} An alphabetic character:[\p{Lower}\p{Upper}]

\p{Digit} A decimal digit: [0-9]

\p{Alnum} An alphanumeric character:[\p{Alpha}\p{Digit}]

\p{Punct} Punctuation: One of !"#$%&'()*+,-./:;<=>?@[\]^_`{|}~

MetaModelAgent – Metamodeling © 2023 Adocus AB page 69 of 77

69

69

Regular expression Matches

\p{Blank} A space or a tab: [\t]

\p{Space} A whitespace character: [\t\n\x0B\f\r]

X? X, once or not at all

X* X, zero or more times

X+ X, one or more times

X{n} X, exactly n times

X{n,} X, at least n times

X{n,m} X, at least n but not more than m times

XY X followed by Y

X|Y Either X or Y

(X) X, as a capturing group

MetaModelAgent – Metamodeling © 2023 Adocus AB page 70 of 77

70

70

Appendix E Pre-defined Keyword

The following keyword can be used for common property constraints:

Keyword

Semantics for the item property

@SOME The property value must not be empty.

@NONE The property value must be empty.

@ANY The property can have any value.

@OTHER The property can have any value besides those represented by the type

@INSTANCE The property must have an instance corresponding to the element type as the
value

@EMPTY Only allowed as value of an enumeration literal. Represents an empty literal.

MetaModelAgent – Metamodeling © 2023 Adocus AB page 71 of 77

71

71

Appendix F Known Limitations

UML Element types not supported

Category Unsupported elements

Interaction
Fragments

ActionExecutionSpecification, BehaviorExecutionSpecification,
ConsiderIgnoreFragment, Continuation, ExecutionOccurrenceSpecification,
ExecutionSpecification, InteractionOperand, MessageOccurrenceSpecification,
OccurrenceSpecification, PartDecomposition, StateInvariant

Events AnyReceiveEvent, ChangeEvent, CreationEvent, DestructionEvent, ExecutionEvent,
MessageEvent, ReceiveOperationEvent, ReceiveSignalEvent, SendOperationEvent,
SendSignalEvent, SignalEvent, TimeEvent

Template
Parameters

ClassifierTemplateParameter, OperationTemplateParameter,
ConnectableElementTemplateParameter

Structured
Activity Nodes

Value
Specifications

ConditionalNode, ExpansionRegion, LoopNode, SequenceNode

Duration, DurationInterval, Expression, InstanceValue, Interval, LiteralBoolean,
LiteralInteger, LiteralNull, LiteralSpecification, LiteralString, LiteralUnlimitedNatural,
OpaqueExpression, StringExpression, TimeExpression, TimeInterval

Constraints DurationConstraint, InteractionConstraint, IntervalConstraint, TimeConstraint

Intervals DurationInterval, TimeInterval

Observations DurationObservation, TimeObservation

Link End Data LinkEndCreationData, LinkEndDestructionData

Directed
Relationships

ProfileApplication

Others Clause, ExceptionHandler, ExtensionEnd, GeneralizationSet, GeneralOrdering,
InterruptibleActivityRegion, ParameterSet, QualifierValue,
TemplateParameterSubstitution, Variable

UML Elements without an own Metaclass Stereotype

There are some UML2-elements that are not represented by an own metaclass
stereotype in the metamodel notation. They can however be represented by a metaclass
stereotype representing a more general element in the UML2 element inheritance
hierarchy. This can be used for validation but are not useful for element creation. That
means that for example an Association Class can be validated (as an Association) but not
created using the MetaModelAgent Add wizard.

The following elements can be represented by the listed metaclass stereotypes:

Element Corresponding stereotype

ClassifierTemplateParameter «templateParameter»

ConnectableElementTemplateParameter «templateParameter»

OperationTemplateParameter «templateParameter»

AssociationClass «association»

FunctionBehavior «opaqueBehavior»

RedefinableTemplateSignature «templateSignature»

http://127.0.0.1:1528/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/ActionExecutionSpecification.html
http://127.0.0.1:1528/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/BehaviorExecutionSpecification.html
http://127.0.0.1:1528/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/ConsiderIgnoreFragment.html
http://127.0.0.1:1528/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/Continuation.html
http://127.0.0.1:1528/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/ExecutionOccurrenceSpecification.html
http://127.0.0.1:1528/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/ExecutionSpecification.html
http://127.0.0.1:1528/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/InteractionOperand.html
http://127.0.0.1:1528/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/MessageOccurrenceSpecification.html
http://127.0.0.1:1528/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/OccurrenceSpecification.html
http://127.0.0.1:1528/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/PartDecomposition.html
http://127.0.0.1:1528/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/StateInvariant.html
http://127.0.0.1:1528/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/AnyReceiveEvent.html
http://127.0.0.1:1528/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/ChangeEvent.html
http://127.0.0.1:1528/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/CreationEvent.html
http://127.0.0.1:1528/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/DestructionEvent.html
http://127.0.0.1:1528/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/ExecutionEvent.html
http://127.0.0.1:1528/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/MessageEvent.html
http://127.0.0.1:1528/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/ReceiveOperationEvent.html
http://127.0.0.1:1528/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/ReceiveSignalEvent.html
http://127.0.0.1:1528/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/SendOperationEvent.html
http://127.0.0.1:1528/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/SendSignalEvent.html
http://127.0.0.1:1528/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/SignalEvent.html
http://127.0.0.1:1528/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/TimeEvent.html
http://127.0.0.1:1528/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/ClassifierTemplateParameter.html
http://127.0.0.1:1528/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/OperationTemplateParameter.html
http://127.0.0.1:1528/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/ConnectableElementTemplateParameter.html
http://127.0.0.1:1528/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/Duration.html
http://127.0.0.1:1528/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/DurationInterval.html
http://127.0.0.1:1528/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/Expression.html
http://127.0.0.1:1528/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/InstanceValue.html
http://127.0.0.1:1528/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/Interval.html
http://127.0.0.1:1528/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/LiteralBoolean.html
http://127.0.0.1:1528/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/LiteralInteger.html
http://127.0.0.1:1528/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/LiteralNull.html
http://127.0.0.1:1528/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/LiteralSpecification.html
http://127.0.0.1:1528/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/LiteralString.html
http://127.0.0.1:1528/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/LiteralUnlimitedNatural.html
http://127.0.0.1:1528/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/OpaqueExpression.html
http://127.0.0.1:1528/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/StringExpression.html
http://127.0.0.1:1528/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/TimeExpression.html
http://127.0.0.1:1528/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/TimeInterval.html
http://127.0.0.1:1528/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/DurationConstraint.html
http://127.0.0.1:1528/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/InteractionConstraint.html
http://127.0.0.1:1528/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/IntervalConstraint.html
http://127.0.0.1:1528/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/TimeConstraint.html
http://127.0.0.1:1528/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/DurationInterval.html
http://127.0.0.1:1528/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/TimeInterval.html
http://127.0.0.1:1528/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/DurationObservation.html
http://127.0.0.1:1528/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/TimeObservation.html
http://127.0.0.1:1528/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/LinkEndCreationData.html
http://127.0.0.1:1528/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/LinkEndDestructionData.html
http://127.0.0.1:1528/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/ProfileApplication.html
http://127.0.0.1:1528/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/ClassifierTemplateParameter.html
http://127.0.0.1:1528/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/ConnectableElementTemplateParameter.html
http://127.0.0.1:1528/help/topic/org.eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/uml/OperationTemplateParameter.html

MetaModelAgent – Metamodeling © 2023 Adocus AB page 72 of 77

72

72

Other Limitations

• The order of different kind of parameters to an operation cannot be specified in a
metamodel.

• Entry, exit, and do-activities on a state cannot be specified separately in a
metamodel.

• Whether a property or operation is inherited or owned by a classifier cannot be
specified in a metamodel.

• Only one source element and one target element of a dependency are supported.

• Only one classifier of an instance specification is supported.

• Associations with more than two association ends are not supported.

• The meta-metamodel does not allow Enumerations in the metamodel to be
referred by directed association from a metaclass. Enumerations must be
referred by a metaclass attribute, where the enumeration is the type of the
attribute.

• Enumeration literals are incorrectly regarded to be inheritable between
Enumerations.

Exceptions from the UML2.x metamodel

Most of the metamodel notation defined in this manual are consistent the UML 2.x
specification when it comes to representing elements in metaclasses and element
properties in metaclass attributes as well as compositions to represent model structure.
However, there are a few exceptions to the consistency with UML 2.x, which are
important to understand when defining metamodels. These exceptions are summarized in
this appendix.

• Dependencies, and all variants of dependencies, are regarded to be owned by
the source element instead of owned by a package. This means that there should
be a composition from the metaclass representing the source element to the
metaclass representing the dependency. The consequence of this is also that
only one source element of a dependency is supported.

• The owner of an association is not respected. Metaclasses representing
association should not participate as part in a composition. Metaclasses
representing association should be referred by navigable associations from
metaclasses representing its association ends. The navigable end should have
the name association, referring to the UML property with the same name.

• Association ends are always regarded to be owned by the element in the
opposite end. E.g., they should always be part of a composition from a metaclass
representing the element in the opposite end.

MetaModelAgent – Metamodeling © 2023 Adocus AB page 73 of 77

73

73

Appendix G The Metamodel Template

This is diagram showing a generic base pattern for a metamodel. All created metamodels
should start with this pattern.

Figure 1: The fundamentals of a metamodel.

Figure 2: The fundamentals of a metamodel in Papyrus

This template is provided as a model template in MetaModelAgent.

The Meta Model Template contains five mandatory metaclasses.

• The Model represents the top element in a model based on the metamodel.

• Type Library Import indicates that the model may have relationships to models
containing type libraries.

• UML Type Library represents an external model containing UML primitive types to be
used in the model. In Papyrus, the name of this library is “PrimitiveTypes”

• Meta Model Instantiation indicates that the model must have at least on dependency
to a metamodel.

• The Meta Model represents an external model holding the DSML for the model. The
Meta Model represents the Meta Model Template.

MetaModelAgent – Metamodeling © 2023 Adocus AB page 74 of 77

74

74

Appendix H Example of a Metamodel

This is an example of a complete DSML for use-case modeling expressed as a
metamodel using the profile in this document. This example is available for download at
www.metamodelagent.com.

Figure 3: The constraints on the model structure of a use-case model.

Figure 4: The constraints on relations, except communication, within a use-case
model.

http://www.metamodelagent.com/

MetaModelAgent – Metamodeling © 2023 Adocus AB page 75 of 77

75

75

Appendix I Migrating Instructions

Below you find migrations needed to be made in metamodels when upgrading from an
older version of MetaModelAgent.

From version 4.2.0 to version 4.2.1

No migration needed.

From version 4.2.1 to version 4.2.2

When using RSAD/RSARTE and Papyrus 2.0: No migration needed.

When migrating from Papyrus 2.0 to Papyrus 3.0 the MMA Metamodel architecture
context should be set for the metamodels to be used. This can be made by the
Architecture Switch menu entry in the Model Explorer view.

From version 4.2.2 to version 4.5.2

No migration needed.

From version 4.5.2 to version 4.5.3

Papyrus only: The MetaModelAgent specific architecture used for metamodels is
deprecated. This affects metamodels created in previous versions of MetaModelAgent.

To check if your metamodel is using the deprecated architecture, try open a diagram in
the diagram editor. If the following popup-dialog appear, the deprecated architecture is
used and must be migrated before the diagrams can be edited.

To migrate your metamodel, select Software Engineering/UML and press OK.

IMPORTANT: Using a metamodel with a deprecated architecture I still possible, but
some exceptions can occur. Using a migrated metamodel in a previous version of
MetaModelAgent is also possible without any problem.

MetaModelAgent – Metamodeling © 2023 Adocus AB page 76 of 77

76

76

Appendix J Experimental features

These are features that are under development and may be changed or removed in later
versions.

DSML Semantics API

Some DSMLs may contain semantics that differ from standard UML semantics.

To make MetaModelAgent aware of alternative semantics, an experimental extension
point com.adocus.mma.dsml.semantics has been added where you could provide

alternative semantics in a plugin that extends the extension point.

Registering the metamodel requires that you provide an implementation of the Java
interface com.adocus.mma.api.IDsmlSemantics.

The interface defines the following two methods

• isDsmlConnector(Connector connector)

Should return true if the connector represents a connector with specific
semantics.

• isForwardConnector(ConnectorEnd source, ConnectorEnd target)

Should return true if the connector is navigable from the source to the target end.

Any extension of this extension point will be used when displaying connectors in the MMA
Trace Matrix View and in the MMA Trace Tree View. It will have no effect on model
validation.

Definition of optional stereotypes

Several DSMLs defines stereotypes that are optional and acts as qualifiers for the
elements that apply them. If there are several optional stereotypes, there will be an
explosion of metaclasses in the metamodel to capture all valid combinations.

To avoid that situation, an experimental metamodel notation has been added where you
in a metamodel can define that an instance of a metaclass can have one or several
optional stereotypes applied.

The experimental construction is a generalization relationship with the keyword
«optional».

The effect in MetaModelAgent is that an optional stereotype is handled as a user-defined
boolean property in the Add Wizard and in the Property View, where the modeler easily
can apply an optional stereotype by checking the corresponding checkbox.

The optional stereotypes will also be displayed in separate columns in the MMA Property
Table View.

User-defined properties for optional stereotypes are not currently supported. If those exist
and are important, separate ordinary metaclasses must be defined.

IMPORTANT: The «optional».keyword is not known by the meta-metamodel. Adding that
keyword to a generalization in a metamodel must be made by the standard property view.

MetaModelAgent – Metamodeling © 2023 Adocus AB page 77 of 77

77

77

Exclusion of Property Definitions

Public Property definitions, e.g., metaclass attributes are by default inherited by sub-
metaclasses. To avoid that a sub-metaclass inherits a public property definition from a
super-metaclass, an attribute with the same name and with the keyword “excluded” can
be added to the sub-metaclass. This attribute should not have any stereotype applied.

IMPORTANT: The «excluded».keyword is not known by the meta-metamodel. Adding
that keyword to a generalization in a metamodel must be made by the standard property
view.

	1 Introduction
	1.1 Reading Instruction
	1.2 References
	1.3 Terminology
	1.4 What’s New
	1.5 Contact

	2 Create a new metamodel
	2.1 Using RSAD/RSARTE or HCL RTist
	2.2 Using Eclipse Papyrus
	2.3 Populate the Metamodel
	2.4 Validate and Test the Metamodel

	3 Introduction to the UML-profile
	3.1 Position in the OMG Model Hierarchy
	3.2 The Scope of this Profile
	3.3 Summary of the Metamodel Notation

	4 Defining Model Items
	4.1 Item Types

	5 Defining Property Constraints
	5.1 Property Values
	5.2 Stereotypes Property Values
	5.3 Property Types
	5.4 Key Properties
	5.5 Severity of a Constraint
	5.6 Alternative Property Values
	5.7 Elements as Property Values
	5.8 User-Defined Properties
	5.9 Optional Property Values
	5.10 Multi-Valued User-Defined Properties
	5.11 Reference to a Context Item Property Value
	5.12 Default property values

	6 Reuse between Metaclasses
	6.1 Metaclass Inheritance
	6.2 Generic metaclasses

	7 Defining Model Structure Constraints
	7.1 Cardinality Constraints
	7.2 Avoiding Ambiguous Structure Constraints
	7.3 And, Or, Xor and Not in Structure Constraints
	7.4 Enforced nested elements
	7.5 Explicit parent references
	7.6 Nested models using separate metamodels
	7.7 Unconstrained Model Structure
	7.8 Suppressing Item Creation
	7.9 Suppressing Change

	8 Defining Relationships
	8.1 Relationship Source
	8.2 Relationship Target
	8.3 Associations
	8.4 References to External Elements

	9 Defining Activity Nodes
	9.1 Actions, Pins, Control Nodes, Object Nodes

	10 Defining Connectors
	10.1 Transitions & Guards
	10.2 Object and Control Flows
	10.3 Messages
	10.4 More about Connector Constraints

	11 Defining Custom Diagrams
	11.1 Custom diagrams in Papyrus extensions

	12 Defining Diagram Content
	12.1 Classifier Diagrams and Object Diagrams
	12.2 Other Diagrams

	13 Combined Property Constraints
	13.1 Restrictions on using Interfaces

	14 Constraint Constraints
	14.1 Defining Constraint Constraints

	15 UML Real-Time Modeling Support
	15.1 Protocols
	15.2 Call Events
	15.3 Capsules

	16 Organizing Metamodels
	16.1 Metaclass packages
	16.2 Import between Metamodels
	16.3 Extend and Adjust an Existing Metamodel
	16.4 Documenting a Metamodel
	16.5 Using a Metamodel

	17 Validating a metamodel
	17.1 Built-in model validation (RSAD/RSARTE and HCL RTist)
	17.2 Using the meta-metamodel
	17.3 Using the Metamodel validation
	17.4 Using a test model
	17.5 Reviewing the metamodel
	17.6

	18 Deploying a Metamodel
	18.1 As a workspace model
	18.2 In a plugin

	19 Models included in MetaModelAgent
	19.1 MetaModelAgent Profile
	19.2 Meta-Metamodel
	19.3 General UML Guidelines Metamodel
	19.4 General UML-RT Guidelines Metamodel
	19.5 Metamodel Template

	Appendix A Stereotypes
	Class stereotypes representing UML elements
	Class stereotypes representing Diagrams
	Other Class Stereotypes
	Attribute Stereotypes
	Aggregation Stereotypes
	Generalization Stereotypes
	Container Stereotypes

	Appendix B Meta Class Attributes
	Attributes representing standard UML element properties
	Special attributes
	Papyrus-specific attributes

	Appendix C Meta Class Operations
	Appendix D Regular Expressions
	Appendix E Pre-defined Keyword
	Appendix F Known Limitations
	UML Element types not supported
	UML Elements without an own Metaclass Stereotype
	Other Limitations
	Exceptions from the UML2.x metamodel

	Appendix G The Metamodel Template
	Appendix H Example of a Metamodel
	19.6

	Appendix I Migrating Instructions
	From version 4.2.0 to version 4.2.1
	From version 4.2.1 to version 4.2.2
	From version 4.2.2 to version 4.5.2
	From version 4.5.2 to version 4.5.3

	Appendix J Experimental features
	DSML Semantics API
	Definition of optional stereotypes
	Exclusion of Property Definitions

